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The numerical simulation of three-dimensional transonic flow about

a system of propeller blades is investigated. In particular, it is
shown that the use of helical coordinates significantly simplifies the

form of the governing equation when the propeller system Is assumed to

be surrounded by an irrotational flow field of an inviscld fluid. The

unsteady small disturbance equation, valid for lightly loaded blades and

expressed in helical coordinates, is derived from the general blade-

fixed potential equation, given for an arbitrary coordinate system. The

use of a coordinate system which inherently adapts to the mean flow

results In a disturbance equation requiring relatively few terms to

accurately model the physics of the flow. Furthermore, the helical
coordinate system presented here is novel in that it is periodic In the

c|rcumferential direction while, simultaneously, maintaining orthogonal

properties at the mean blade locations. The periodic characteristic

allows a complete cascade of blades to be treated, and the orthogonal|ty

property affords stra|ghtforward treatment of blade boundary conditions.

An ADI numerical scheme is used to compute the solution to the steady

flow as an asymptotic limit of an unsteady flow. As an example of the

method, solutions are presented for subsonic and transonic flow about a

5 percent thick bicircular arc blade of an eight bladed cascade. Both

high and low advance ratio cases are computed, and include a lifting as

well as nonlifting cases. The nonlifting solutions obtained are

compared to solutions from an Euler code.
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I. INTRODUCTION

The rapld rise of computer capability has greatly influenced the

methodology for attacking complex problems in engineering and science.

The trend toward the numerical formulation and solution of problems has

grown and wlll undoubtedly expand in the future. In the areas of fluid

mechanics and heat transfer, this approach is known as computational

fluid dynamics (CFD).

The application of computational fluid dynamics methods toward the

simulation of the flow surrounding high-speed propellers is the subject

of this work.

Many examples of both steady and unsteady flows of practical

interest are well approximated by various forms of the governing

equations of fluid mechanics. The recent marked advance in computer

capabilitles and the rapid growth of efficient and accurate numerical

methods have allowed a number of difficult flow problems to be examined.

In the past, analytical and experimental metnods were the two main

avenues for obtaining aerodynamic solutions. While analytical methods

are still being enhanced and often give quick solutions, they suffer the

drawback of being limited to simple configurations. On the other hand,

wind-tunnel experiments can handle complicated configurations, but are

limited to certain flow ranges and require expensive models and

extensive test tlmes. Nevertheless, the wind tunnel has served as the

primary tool for the development of aerodynamic configurations. Shapes

can be tested and modified in light of pressure and force measurements.



Analytical methods are generally limited to simpler isolated components

and partially owe their usefulness to the fact that efficient

aerodynamics can only be achieved with well ordered flows.

Consequently, simplified mathematical models are often adequate

replacements for the full set of governing equations. This was utilized

with great success in many important applications. For example, often

purely inviscid flow assumptions for irrotational flow, in which the

velocity c_n be formulated in terms of a gradient of a scalar, have

proven suffi=ient. However, both the limitations of the analytical

techniques as well as the costs of the wind tunnel studies are a11 too

apparent as the features of the flow fields become more complex. This

is espec_ally true for the prediction of transonic flows. Thus, a need

for alternative solution methods was created.

The growing area of computational fluid mechanics offers an

attractive complementary alternative to analytical methods or

experimentation by providing details of the flow physics as well as data

beyond the experimental range while affording configuration

optimization. The use of computational methods to provide solutions

about rotating propellers is one i11ustration of the ability of these

techniques to solve a complicated set of nonlinear partial differential

equations and associated boundary conditions.

Coinciding with the arrival of increasingly powerful CFD methods,

was the emergence of renewed interest in propellers which offer large

performance improvements for aircraft that cruise ir, the high subsonic

speed range. The reason for this is that for lifting surfaces, to a

first approximation, the efficiency is proportional to the Math number

of the approaching flow times the lift to drag ratio. The lift to drag



ratio rises monotonically with Mach number until a sharp drop-off occurs

at high subsonic free-stream Mach numbers. Thus, it pays to increase

the speed as much as possible until losses associated with increased

drag become prohibitive.

The very high propulsive efficiencies of the advanced free air

propeller coupled with the need to reduce fuel costs has led to a

rebirth in propeller research programs. These programs have introduced

changes that have altered advanced high-speed turboprops considerably

from their low-speed turboprop counterparts. The most notable changes

are the use of eight to ten thin, highly swept, sma11-diameter blades

instead of two to four longer, thicker, and unswept conventional blades.

These changes allow propellers to operate efficiently in the transonic

flow regime. However, they require sophisticated computational methods

in order to predict and calculate their aerodynamic characteristics.

This is mainly due to the increased three-dimensionality of the flow

field encompassing these low aspect ratio blades and to the rise of

mathematical nonlinearity in the flow model which is associated with

their transonic tip speeds. Also, their thin structural design makes

the blades prone to flutter. This is a source of uns[eadiness which

must be considered in additlon to the inherent unsteadiness of the

transonic regime.

Improvements in present techniques are needed to provide accurate

solutions for unsteady three-dimensional transonic flows about

propellers. Tne use of numerical methods offers the potential for

solving complex equations in intricate geometries sucn as those which

exist in the case of simulating flow about rotating propeller blades.

However, as with any method, limits exist on the capabilities. These
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limits involv_ the speed and memory of the computers and the

availability of efficient algorithms as well as considerations of

robustness and affordability. For a given problem, jlldgment dictates

the trade-off between the suitability of a particular model and the

feasibility of the calculation. This is very much the same dilemma as

faced when Jsing a theoretical approach.

It is generally accepted that the full Navler-Stokes equations,

which satisfy conservation of mass, momentum and energy in a viscous

heat conducting fluid, provide a complete description of most flows of

interest to CFD. The unsteady compressible Navier-Stokes equatlons are

a mixed set of hyperbolic-parabolic equations; for unsteady

incompress_ole flow they are a mixed set of elliptic-parabolic

equations; for steady compressible flow, they are a set of hyperbolic-

elliptic equations. In the latter case, due to the effect of the

different character of the numerical schemes required for hyperbolic and

elliptic terms, the equations are often cast in the unsteady form and

marched to a steady solution. At high Reynolds number, the unsteady

compressible Navier-Stokes equations are difficult to solve due to the

large difference in magnltude between the inertial and viscous forces.

The large inertial forces of the hyperbolic terms can impose small time

steps in order to meet accuracy or stability requirements. This time-

step limitation generally severely retards the effects of viscosity

associated with the parabolic terms of the equation. The consequence

is that excessive computer time is needed to resolve the flow.

The solution of the Navier-Stokes equations for general three-

dimensional, time-dependent, turbulent flow is a distant goal.

Candidates for the near future include certain averaged forms of the



Navier-Stokes equations. The one most 1|kely to find appllcatlon to

aerodynamics is the Reynolds-averaged form. Here the the turbulent

terms are a'_eraged with respect to time and the stresses are determined

by empirical closure formulas. Other more advanced forms of modeling

exist such as the large eddy simulation model. In this case the full

time-dependent Navier-Stokes equation is used to calculate the

development of large scale turbulent eddies. These eddies are

anisotropic and highly structured. A process analogous to Reynolds

averaging i_ used to model the subscale turbulence. Although

interesting results have been reported, computational time for the

solution of either the Reynolds averaged model or large eddy simulation

model is exorbitant for general use.

Current progress in aerodynamic design has relied mainly on the

approach fostered by Prandtl, whereby viscous effects can be considered

to be confi_led to a relatively thin region, called a boundary layer,

adjacent to solid surfaces and their wakes; the entire remaining

external flow can be regarded as being inviscid. This method

effectively splits the flow into two distinct but coupled regions. The

forms of the govern%ng equations have quite different characteristics

and demand different solution methods. This a11ows a considerable

savings in =omputer time and storage since all the viscous terms are

neglected in the inviscid region and only the viscous terms normal to

the wall are retained in the boundary layer. In addition, the momentum

equation is simplified in the viscous region and as a consequence the

normal pressure gradient is neglected. Special boundary-layer type

marching techniques are available which offer additional savings in

computation time and storage. Much attention has been focused on



prov%ding the correct representation of the viscous-inviscid coupling

and the proper matching of their solutions at the interface of the

regions. In many cases it is not acceptable to use two sets of

equations. These cases include flows with strong coupling between the

outer inv|scid region and the boundary layer, such as found in a

supersonic flow around a blunt body or in flows containing strong

shocks. In these instances it would not be valid to neglect the normal

pressure gradient when forming the normal momentum equation. As a

consequence boundary layer techniques are often inadequate.

Another set of equations which are approximations to the Navier-

Stokes equations and which are valid for both the inviscid and viscous

regions, are i'eceiving considerable recent attention. These are known

as the thin-la_,er Navier-Stokes equations. They simplify the complete

Navier-Stokes equations by neglecting the viscous terms containing

derivatives parallel to a solid surface, as in the boundary layer

formulation, but retain all the other terms in the momentum equation;

thus, the pressure gradient in the direction normal to a surface is not

neglected. Tile use of the thin-layer Navier-Stokes equations allows the

robust calculation of separated and reverse flows and flows containing

significant normal pressure gradients. In many instances the thin-layer

equations can be treated by the same efficient boundary-layer type

marching techniques that are employed in solving the boundary layer

equations.

Sets of equations, each of somewhat different form and similar to

the thin layer Navier-Stokes equations, are obtained if only the

streamw_se viscous terms are omitted from the Navier-Stokes equations.

These forms are called the parabolized Navier-Stokes equations, and the
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differences in the forms depend on their derivation and whether terms

such as the streamwise pressure gradient are retained in the streamwise

momentum equation. The thin layer and the parabolized equations are

equivalent for two-dimensional flows. However, efforts to develop

efficient solution procedures are hampered by the fact that different

forms generally require different strategies due to the nature of the

equations or characteristics of the flow.

Very useful inviscid forms of the governing equations exist.

Currently, solutions of the Euler equations, obtained from the Navier-

Stokes equations by neglecting all the viscous terms, are solved

routinely for two-dimensional flows and even three-dimensional codes are

emerging. Wider use has been made employing the full potential and

small disturbance forms of the potential equation for inviscid,

irrotational flows. While the Euler equations are valid for rotational

flows, the potential formulations are not, and thus, the latter are not

strictly valid when entropy producing discontinuities such as shocks

exist. On the other hand, many instances occur where the departure from

purely irrotat_onal flow is slight, such as the flow around thin bodies

or in the case of shocks which are sufficiently weak as to generate

little entropy or vortlcity.

In general, considering the flow around an aerodynamic surface to

be inviscid allows the lift to be calculated quite accurately. The

drag, on the other hand, depends substantially on frictional stresses

as well as the distribution of the normal pressure over the surface.

Frictionless flow theory can be used for the determination of the drag

component arising From the normal pressure components whereas an



appropriate skip friction coefficient must be used to obtain an estimate

of the total drag.

A numberof numerical codes are currently being developed to

calculate p,'opeller flow. These solve either the full potential or

Euler equaticns. Although these equations accurately model the flow,

they are computationally more expensive and are more complicated to code

than the small disturbance equation.

A computer program was developed (Refs. l to 4) to simulate the

flow over blade-tips of helicopter rotors. This code solves the small

disturbance equation (Ref. 5) appropriate to a helicopter in forward

flight. In particular, results were obtained that showed the code was

able to track the development of a shock and its subsequent propagation

upstream. The _uccessfu] application of the small disturbance code in

this manner indicated that the sameapproach could b? applied to the

propeller problem.

The fa:t that turboprops operate at high subsonic cruise speeds

meansthat at least the tip region of each blade wil] be embeddedin a

transonic helical flow. Shocks may likely exist ahead of, or on, the

blades, depending on the flight speed and propeller design. Shocks of

high strength indicate large wave drag. Efficient flight dictates that

only weak shocks are acceptable, which implies little entropy

generation. The potential formulation should provide a good

approximation to the Euler equations as long as the shock strengths are

less than that of a normal shock with an upstream Mach number less than

about ].3. Presently, turboprops that have helical Mach numbers

slightly less than ].0 at the hub to about ].]2 at the tip are being

designed. It is reasonable to expect that the shock strength is
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sufficiently weak near the blade tips, where three-dimensional relief

effects occur. Hence, that the potential formulation is adequate.

Furthermore, the use of a perturbation potential in place of a full

potential significantly simplifies the formulation of the problem.

Although many similarities exist between the equations developed

for the helicopter rotor and the propeller problem, fundamental

differences exist between the two. These differences demandthat

special consideration be madein accurately treating each type of flow.

For example, in the case of the helicopter rotor, tile flow field as

observed In a coordinate system attached to the blade remains unsteady

even if blade flutter is ignored. However, when the axis of rotation

for a propeller coincides with %ts flight direction, a steady flow

results with a blade attached coordinate system. This allows the steady

problem to be examined separately from the flutte_ or gust problem.

With the goal of using the numerical algorithm developed for the rotor

code to the propeller problem, several concerns need to be addressed.

Manyof these concerns are naturally handled by using a suitable

coordinate s}stem.

The key to simplifying the potential formulation of the propeller

problem is the use of the helical free-stream direction as the primary

direction. This provides an accurate primary flow upon which a

perturbation can be superposed. The use of a helical flow, which

inherently captures the flow curvature, results in a marked improvement

over using aF,axial flow as the primary flow direction. The optimum

flow to base a perturbation about is the exact flow; helical flow much

more closely approximates the exact flow about a rotating and advancing

propeller than does axial flow.



lO

Since _he helical flow direction captures the fundamental

properties of propeller flow, relatively few terms are needed in the

resulting distL'rbance equation to provide accurate modeling of the flow.

In fact, no more terms are needed than when using Cartesian coordinates

for the rotor problem. In addition, due to the similar nature of the

two problems, the terms in the two sets of disturbance equations

correspond identically except for their coefficients. Thus, the

propeller equation is amenable to the same potential equation solver as

developed for the helicopter. This is quite advantageous since much

effort has been expended, both in making the potential solver efficient

and in verifying its operation.

While the helical flow direction is an ideal choice for the primary

flow direction, other considerations must be taken into account in order

to provide a satisfactory coordinate system. These considerations hinge

on the desire to include cascade effects and the employment of small

disturbance boundary conditions near the blade surfaces. Proper

specification of the helical coordinates permits the straightforward

treatment of annular cascade flows while maintaining orthogonal

properties near the blade locations. The helical coordinates given in

this thesis a!1ow both of these requirements to be met.

These hellcal coordinates are analytically defined in terms of

basic propeller parameters through simple transformations to Cartesian

coordinates. Thus, they automatically adapt to tile cascade

configuration for any number of blades and blade twist, which itself is

a function of the propeller advance ratio. The helical coordinates

enter the proolem in terms of the components of the metric tensor for

the transformation. These components are readily evaluated in a
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separate subroutine. The Jacobian of the transformation is particularly

simple and proJides a means of verifying whether a given transformation

is valid.

Obtaining accurate solutions for steady, not to mention unsteady,

three-dimensional transonic flows, presents a difficult challenge even

for the most advanced computational methods. The present work assumes

a steady-state flow exists as observed in a reference frame attached to

the propeller system, rotating with a constant angular velocity. This

is considered a necessary step which must be completed before

undertaking the unsteady problem. In addition, the fluid will be

regarded as being inviscid in an irrotational flow field and thus is

expressible iq terms of a potential formulation. The solution is sought

in terms of a disturbance potential. This disturbance potential is the

potential associated with the reduced velocity obtained by subtracting

both the free-stream velocity and the rotational velocity, resulting

from the transformation to a noninertial reference fFame, from the total

velocity. This solution should be valid for lightly loaded blades.

Presentation of this thesis will begin with an introduction of some

basic propeller concepts. In turn this will be followed by a historical

review of some notable analytical and numerical endeavors related to

propeller theory. This review is intended to provide the background and

motivation for this work as well as form a basis for justification of

the approach taken. In the subsequent chapter, the governing equation

for the three-dimensional small perturbation potential is derived in

detail from fhe general potential equation in a rotating reference

frame. Here, the full potential equation is given in general tensor

form applicable to any suitable coordinate system which need not be
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orthogonal. Following thls, the small disturbance form of the equation

is derived in terms of coordinates which are scaled by the relevant

transonic scaling parameters. A separate chapter is next provided for

the boundary condition equations. A chapter dealing wlth the coordinate

system construction and its arrangement to suit a cascade of propellers

is then presented. This is related to two appendixes on analytical

helical coordiaate transformations. Next, a chapter on the numerical

procedure and solution technique is given. A generalized form of the

Douglas-Gunn algorithm is introduced which allows for addltional cross-

derivative terms to be included in the potential solver. However, for

the flow cases presented here, these terms had little effect on the

solution, and, hence, for the results of this effort they were omitted

from the governing equation. The next chapter presents and discusses

details of the results obtained. Solutions are presented for an annular

cascade consisting of eight bicircular arc blades w_th a maximum

thickness of five percent. These blades are run for two geometric

operating conditions: a high advance ratio case where the advancing

speed is large compared to the rotational speed of the propeller tip,

and a low advance ratio case where these two speeds are equal. For the

high advance ratio case, the helical free-stream Mach number relative

to the blade tip is MR : 0.8. For the low advance ratio case, results

for two values of the free-stream Mach number are presented--a subsonic

free-strean_ case of MR = 0.8, and a transonic case of MR = 1.1 which

is representative of a turboprop. In general, the results are for zero

angle of attack; however, a lift_ng case is presented for the low

advance ratio and high free-stream condition. The nonlifting cases are

compared with results from an Euler code (Ref. 6). A final chapter
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delineates concluslons reached and recommendsfuture efforts. Three

append|xes are Included. The first two concern hellca1 coordinate

systems; the first of these presents the metric tensor for periodical

coordinates used in the present work and the second presents

nonperiodical coordinates used for flow about isolated blades. The

remaining appendix contains a listing of the formulas for the derivative

expressions relating stretched coordinates and uniformly spaced

computational coordinates.



II. PROPELLERCHARACTERISTICSANDNOMENCLATURE

Somebasic concepts will now be introduced related to common

propeller characteristics and nomenclature. In manyways it is useful

to think of the propeller as a highly twisted wing acted on by both

lifting forces and drag forces. Lift is produced normal to the relative

velocity at the surface. For small angles of incidence _i' the lift

is proportional to this angle. The angle of incidence equals the angle

of attack _, minus the angle of zero lift _o' as shown in

Fig. 2.1. In a real fluid, drag is produced in a direction parallel to

the relative velocity between the fluid and the body. The main

distinction between a wing and propeller is that a propeller rotates and

produces thrust while working its way through the fluid whereas a wing

just advances while producing lift. The combined rotational and forward

motion of the propeller results in highly twisted blades which are

formed of radially varying profiles with the thickest sections nearest

the hub. This increase in complexity admits additional parameters

beyond those encountered in wing theory.

The most important propeller parameter is the advance ratio which

relates the forward velocity V to the rotational speed. The forward

velocity is assumedto lie in the direction of the axis of rotation and

will often be referred to as the axial velocity. The advance ratio J

is commonlyoefined as equaling the propeller's forward velocity divided

by the product of its rate of revolution n times its diameter D"

V (2.1)J _ nD

14
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Another definition of the advance ratio is frequently used.

designated by _ and equals the ratio formed by dividing V

angular velocity of the propeller's tip

V
_

_R

where

It is

by the

is the angular frequency of shaft rotation and R is the

(2.2)

tip radius of the propeller. Convenience or mode of practice determines

which definition is used since the two are related by

J = =X. (2.3)

In the present work, _ will be used throughout.

The relationship between the forward and rotational velocities for

any propeller section is expressed in terms of the advance angle

diagrammed and related to a helical curve in Fig. 2.2. The following

relation connects the advance angle with the radius:

V
tan B - (2.4)

Dr "

The slope of any helix is thus proportional to l/r. The distance

advanced during one revolution is termed the pitch, obviously the same

for all radial elements of a rigid body. The surface swept out by the

leading edge of a rotating and advancing propeller is a helical surface

or helicoid and is called the advance helicoid. The angle of attack of

any blade element is generally referenced to the advance angle B; i.e.,

the angle of attack is measured from the advance helicoid. This is

because a very thin blade constructed to lie in the advance helicoid

produces no lift, and thus it gives a definition consistent with that of

the planar wing. Blades are constructed such that the angle of attack

varies radially. This variation in _ can be interpreted as a radial

variation in blade pitch since each radial element of the blade has a
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geometrical pitch which, in general, differs from the pltch of the

advance hellcold; the mean surface of a lifting, symmetric blade does

not 1ie in a h_lical surface. This spanwise variation of blade pitch

introduces lift and allows the blade to be optimized in regard to its

ratio of lift to drag. In elementary design the pitch of each section

is chosen to give the optimum angle of attack for that section's

profile. Figure 2.3 illustrates a typical span station showing the

chord E, angle of attack _, and the maximum thickness tma X along

the chord.

The performance of a propeller is measured in te,'ms of its

efficiency. The efficiency n is defined by

THRUST x FREESTREAM VELOCITY
(2.5)

n = SHAFT POWER

It is convenient to introduce dlmens_onless coefficients for thrust and

power that hav_ the form

T P

CT - and Cp - 3D 5 ,pn2D 4 pn

(2.6)

respectively, where T is the thrust, P is the shaft power, and p

is fluid density. Then the efficiency can be simply expressed _n terms

of these coefficients and the advance ratio J in the following form:

CTJ
(2.7)

q - Cp

When stating the efficiency for a complete propeller system, it _s

necessary to denote the thrust, thrust coefficient and the corresponding

efficiency in a manner indicating that the effects of components such as

the spinner and nacelle are included. This is customarily done by using

the subscrip_ "net," such as in the following:



19

(I

l

/-tMA X
/

FIGURE 2.3. - AIRFOIL SECTION SHOWING CHORD l,

ANGLE OF ATTACK 5, AND MAXIMUM BLADE THICK-

NESS tMAX.



2O

CT,netJ

nnet - Cp,net (2.8)



III. HISTORICAL REVIEW

3.1 Analytical Methods

Investigations of flow about propellers have their roots in the

early work of Rankine and Froude which was based on simple momentum

theory for an incompressible flow. Simple application of momentum

theory considers the momentum and energy of the fluid and treats the

propeller as an actuator disk that imparts momentum to the fluid which

passes through. This causes the formation of a slipstream of increased

axial velocity. In performing this analysis (Refs. 7 to 8), it is

useful to assume that the propeller system is composed of a large number

of equally spaced blades producing a circumferentially uniform flow in

which the velocity is constant across the disk but greater than that of

the surrounding free-stream. A pressure change occurs across the disk

which accounts for the momentum gain. By assuming irrotational flow and

by applying Bernoulli's equation to streamlines on each side of the

disk, this change in pressure can be related to the velocity rise in the

final slipstream. The values of the pressure and velocity at pertinent

locations are shown in Fig. 3.1 which illustrates this simple model.

The value of the velocity increase, v, at the disk is found to be

exactly half the increase, v l, existing in the final slipstream.

Further results concerning propeller efficiency may be presented

after considering the increase in axial momentum and rate of energy

input. The use of momentum theory leads to limits on the maximum

efficiency. Explicit relations are obtained between efficiency and both

21
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power and thrust, which are customarily represented in terms of their

coefficients, as a function of the most important propeller parameter,

the advance ratio O. A more exact account of momentum theory,

including the effect of slipstream rotation is given by Betz (Ref. 9).

However, it should be mentioned that momentum theory fails to yield the

detailed forces (loading) acting on each blade element.

The attempt to determine the forces acting on the blades leads to

the creation of the blade element theory. This theory approximates the

aerodynamic forces acting on a blade by treating eactl radial element

between r and r + dr as a two-dimensional w_ng section. The use of

wing section theory provides the elemental lift and drag forces, which

can be resolved in component form in the directions of thrust and

torque, at each radial section. The values of the total thrust and

torque can be determined by integrating the contributions of the radial

elements. Corrections to account for the influen=e of neighboring

elements can be added in an empirical manner.

The application of blade element theory has been used in

conjunction with momentum theory to provide improved results over

solitary use of either method. This combined technique provides perhaps

the best method for evaluating propellers with a large number of blades

without actually calculating the entire three-dimensional velocity and

pressure f!e]ds comprising the flow. However, for the normal situation

involving propellers with few blades, the assumption of axial symmetric

flow arising from the momentum viewpoint is weak since most of the flow

does not pass wear a blade.

The evolution of propeller theory advanced significantly from the

work of Goldstein (Ref. 10) which also stemmed from the successful
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development of the theory of the airfoil. This theory acknowledged the

role of circulation in the generation of lift, a concept set forth by

Kutta and Joukowski, and it also contained the formulation of Prandtl's

model of flow past a finite wing of large aspect ratio. Prandtl's model

introduced the concept of a continuously trailing vortex sheet which

replaced the simpler model of two trailing tip vortex lines offered by

Lanchester. Curthermore, this model allowed the actual airfoil to be

replaced at _ts mean location by a bound vortex sheet across which a

pressure difference can exist. For wings of large enough aspect ratio,

the vortex sheet representing the wing can be approximated by a single

bound vortex line lying in the plane of the wing normal to the

approaching flow and with spanwise varying strength. Together the

streamwise aligned vortices of the trailing vortex sheet and the lifting

line vortex, representing the wing, induce velocities which superpose

with the undisturbed stream velocity. The application of these

propositions to the case of the propeller, including the modifications

needed for three dimensional flows containing discontinuities, results

in a complicated set of integral equations.

Using the groundwork provided by early airfoil theory, Goldstein

constructed a model which assumed that the trailing vortices emanating

from the rear edge of the propeller forms a rigid vortex sheet of

constant velocity, which closely approximates the structure of a helical

sheet. The rigid vortex sheet was assumed to be embedded in an inviscid

fluid with zero circulation. The flow far downstream of the propeller

was taken as satisfying Laplace's equation" 92@ = O, where @

represents the velocity potential whose gradient is the fluid velocity.

By aptly defining a helical coordinate along the screw surface in terms



25

of cyIindrlcal polar coordlnates, Goldstein was able to simplify the

treatment of the boundary conditions. Satisfying single-valuedness and

meeting continuity requirements, etc., led to a solution for the

velocity potential far downstream of the propeller _n terms of Bessel

functions. Formulas were then derived from which the optimum load

distribution _long the blades could be calculated for any number of

blades.

Proceeding along the lines set by Goldstein, Reissner (Ref. 11

to 12) derived and presented in more detail (Ref. 13) integral relations

connecting circulation, thrust and torque along the span with the

geometric and flow parameters such as blade angle distribution, number

of blades and inflow angle. It is interesting to note that while the

complete set o__ equations presented was derived on the foundations

developed from wing theory for incompressible flo_, nevertheless, ideas

introduced by H. Lamb (Ref. 14), for treating the magnetic field arising

from a helical electric streamline, were drawn upon. Lamb presented the

three-dimensional B1ot-Savart integral in a manner which took advantage

of helical s!,mmetry and managed to reach solutions for the electric

potential problem which were comprised of Bessel functions of the first

kind for the inner radial field and of the second kipd for the outer

field. Reissner set out from this point, aided by the work of Kawada

(Ref. 15), which was concerned with the induced velocities resulting

from a clrculation of constant strength along a blade and which also

made use of helical symmetry. Re_ssner based his mathematical

development on the Poisson differential equation, V2@ = q, for a

velocity potential produced by an arbitrary source distribution. He

proceeded toward a more general integral equation, which differed from
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the Biot-Savart integral and the series solution obtained by Goldstein,

by replacing the b}ades with lifting lines with infinitely thin trailing

vortex sheets. The vortex sheets were represented by the proper

distribution of sources and sinks entering on the right-hand side of

Poisson's _quation. Helical symmetry was invoked to reduce the number

of independent coordinates to two, with the new independent coordinates

being a radlal coordinate and a helical coordinate defined in the manner

of Goldstein and Kawada from cylindrical coordinates. The ability to

arrive at this two-dimensional equation for the velocity potential

relied on the vortex sheets being arranged so as to lie on multiple

sheets of hellcal symmetry with infinite extent downstream. Further

reflnements, which removed this symmetry conditlon but improved the

theory, were pointed out by Reissner. These included taking into

account the radial contraction of the flow on passing through the

propeller system (slip-stream contraction) and the displacement of the

helical vortex sheets due to their mutual interaction. These

improvements were considered, however, to be of a secondary nature.

Shortly before the end of World War If, Theodorsen published a

series of technical papers (Refs. 16 to 19) dealing with both single and

dual rotation (counter-rotating) propellers. These reports formed the

basis of his subsequent book Theory of Propellers (Ref. 20), which

presented experimental measurements as well as the theoretical

treatment.

Theodorsen extended the lightly-loaded theory presented by

Goldstein in hls 1929 paper to that of heavy loading by redefining

certain key propeller parameters. Goldstein had acknowledged that a

better approximation would be gained, valid for moderate loads, by doing
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such. This modification took into account the increase in advance ratio

and slipstream contraction that can occur to a wake surface as it

travels downstream; see Fig. 3.2. Expressions were derived for the

thrust, torque, and efficiency in terms of these parameters. Included

with these parameters were the circulation coefficient connecting the

circulation at each blade element to the advance _atio and the mass

coefficient parameter which represented an average of the circulation

coefficient over the cross-section normal to the flow. It is important

to note that these parameters referred to the ultimate wake and not to

the region immediately behind the blades. Theodorsen reasoned that the

distribution of circulation existing on the propeller blades is, to the

first order, the same as the resulting distribution of potential

difference existing in the wake if the radius of the wake is stretched

at each axial location to equal the radius of the propeller blades. The

optimum circulation distribution for heavy loading is thus identical to

that of light loading provided the helix angles in the ultimate wake are

the same. Thus, the key relations for propeller theory, as developed

along the lines of Goldstein, were extended to heavy loading and

expressed compactly in terms of the important mass coefficient

parameter.

In addition to the theoretical development, Theodorsen carried out

extensive detailed measurements. Here he relied on the analogy between

electrical theory and fluid mechanics for potential fiow to conduct

electrolytic-tank measurements in place of convencional wind-tunnel

tests. By placing a helical insulating surface into an electrolytic

tank with a uniformly imposed electric field along it axis, an electric

field entirely descriptive of the discontinuous flow behind a propeller
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was produced. The effect of advance ratio and number of blades on the

mass coefflclent was readily determined by varying the helix shape and

geometry of the tank. This provided the experimental results needed for

comparison with theoretical results and extended the results beyond the

known range to include higher advance ratios. The general procedure is

covered in some detail for applying the theory to the general design

problem. The interested reader is referred to Theodorsen's book.

Still within the structure of linearized theory, Busemann

(Ref. 21), _nd Davidson (Ref. 22) attempted to include compressibility

effects by generalizing the incompressible propeller theory to

supersonic tip speeds. These two investigations progressed from origins

similar to those of Goldstein and Reissner. Busemann advanced physical

arguments to explain or predict changes in the flow for higher Mach

numbers; Davidson provided detailed calculations as well. The most

notable cha,'acteristic of flows at Mach numbers approaching unity is the

mixed nature of the flow fields. For mixed flows the el]Iptlc character

of the solutions for subsonic regions, which are essentially

incompressible, are joined by the hyperbolic character representative of

the supersonic regions where compressibility effects cannot be ignored.

The existence of supersonic as well as subsonic regions of the flow was

recognized and tied to the solutions which again took the form of

Fourier-Besse] functions. In these cases the solutions obtained

satisfled the steady linearized small disturbance equations. Busemann's

equations were restricted to two dimensions involving polar coordinates.

Davldson developed a more general disturbance equation which was

expressed in both cylindrical and helical coordinates. Although the

equations contained no nonlinear terms, they exhibited the mixed nature
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of the flow field which progressed with increasing radius from an

entirely subsonic (subcritical) flow to a flow embeddedwith pockets of

supersonic (supercritical) flow to, finally, totally supersonic regions

at the tip. In contrast, the fixed wing problem results in essentially

only one of the above cases depending on the approaching Machnumber.

It is largely a result of the radial variation of the helical velocity

that makes the propeller problem more complex than that of the wing.

This is evidenced by the presence of the spanwise-type mixed flow

feature even with linear theory.

Even within the limitations of linearization, the effects of

numerousgeometric parameters must be taken into account for a more

rigorous treatment of prope]]er flow. The effects of thickness, camber,

angle of attack, sweep, offset, blade interference, and tip relief must

be dealt wltn to a sufficient degree. A numberof more recent

investigations has addressed different aspects of these problems. In

particular, an analytical effort by Hanson (Ref. 23) to include these

items resulted in a fairly general description of the flow field. He

constructed an analysis for prop-fans based on the acoustic methods of

Goldstein (Ref. 24) which relate the density disturbance at any point

in a mediumenclosed by impeFmeablewalls to the arbitrary motion of

unsteady sources. This is accomplished via an integral formulation

employing Green's functions and provides an integral equation for the

near and far field density disturbance and one for the unsteady velocity

potential. The result for the disturbance pressure, or acceleration

potential as it is often called, is valid for any Machnumber and

planform but presumes that the surface pressures are known. The

formulation fo_" the derivation of the velocity potential contains only
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linear source terms and is valid for any steady or unsteady helically

convected source. The velocity potential itself must be obtained by

inversion methods used for wing analysis. Twokey elements were needed

to achieve these results. First, the exact boundary conditions at the

blade surfaces were actually applied at meanreference surfaces

approximating the blade positions, thus greatly simplifying the

mathematics. Secondly, it was recognlzed that a helicoidal surface

theory could be used as a natural extension of wing theory with the

observation that each blade element rotating in forward flight sweeps

out a helix. Thus, a coordinate system was established that was formed

by a dimensional coordinate at constant radius in the advance helicoid,

a radial coordinate, and another coordinate at constant radius lying in

the helicoid normal to the advance helicoid. Blade coordinates are then

transferred to the advancing helicoid at locations neighboring the upper

and lower blade surfaces as in thin airfoil theory. In this manner the

ideas of wing theory were adapted to propeller analysis. This analysis

then gives aerodynamic and acoustic information pertaining to steady

performance, unstalled flutter, and noise radiation.

This discussion concludes the section on analysis methods; it is

necessarily incomplete, but presents a review introducing manyof the

important concepts developed earlier in propeller theory. It should be

stressed that the above methods neglected manyphysical phenomenain

order to simplify the mathematical models and provide solutions.

Indeed, their success hinged mainly on construction of simplified

models. These models retain most of the significant physics, and which

could be sclved and lead to improved designs. It is testimony to the

insight and resourcefulness of these early researchers that such large

strides could be made.
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3.2 Nonlinear Flows with Shocks

This sectlon discusses the development of CFD methods applied to

high-speed flows where compressibility effects are important and in which

shocks may be present. Generally the effects of viscosity and heat

conduction will be considered negligible, though some comments will be

made concerning the former. The development of successful CFD methods

has relled on an understanding of the phys|cal characteristics and the

mathematical properties of the partial differential equations associated

wlth these flows. The physical significance and the mathematical

behavior of the governing equations for Invisc%d flows of this type will

be reviewed in order to establish the consequences of transitioning

from partial differential equations to finite difference equations.

Difference equations can be thought of as approximating the partial

differential equations (PDE) on a general lattice of mesh points. In

this manner, the continuous functions present in the PDE w|ll be

replaced with finite difference functions that are discrete and defined

only on the lattice and only at discrete intervals of time. The finite

difference equations will be considered consistent with the correspond-

ing PDE if it can be demonstrated that any difference between the PDE

and the finite difference representation vanishes as the general

lattice of mesh points is refined. This can be accomplished if a

substitution of an assumed solution to the PDE in the form of a Taylor

series expaqsion into the finite difference equation produces agreement

to within a set of higher order terms which tend to zero as the mesh

spacing and time interval simultaneously are allowed to approach zero.

The higher order terms are called the truncation error terms and

represent one measure of solution accuracy. The accuracy cannot be
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predicted bei_orehandsince in each truncation error term, a derivative

factor of differential order corresponding to the order of the term is

also present, but unknown. For cases where large gradients in the

solution exist, these derivatives can be large enough to offset the

smallness of the mesh. Estimates of accuracy cap be madeonce a

solution is achieved by examining the truncation terms or by repeating

the calculation for several levels of meshdensity. The consistency

condition is an important requirement for a difference scheme. If a

dlfference schemeconverges, then it will converge to the solution of

the corresponding dlfferential problem provided that they are

consistent wlth each other.

In additlon to consistency, one would prefer that the solutions for

a set of finite difference equations possess certain properties desired

similarly, though not necessarily guaranteed, for the PDE. Onehopes

that a solution exists that is unique and stable. In this regard a

problem can be considered to be stated properly if it has exactly one

stable solution satisfying both the governing equations and the

auxiliary conditions. The auxiliary conditions are usually boundary or

initial conditions but may include both or other types of constraints.

The existence and uniqueness requirements are dependent on the stated

conditions being consistent and sufficient to determine a unique

solution. The stability property manifests itself in different

contexts. A stable solution of a mathematical physics problem implies

that, for small changes in a given condition, there will be

correspondingly small changes in the solution. The question of

stability is very important since inevitably the process of carrying out

a solution introduces someerror through truncation or the inexact
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specification of some condition. It is essential that the effect of

these errors remain small, causing only small inaccuracies in the

solution.

The solution of a problem using a finite difference grid carries

with it inherent inaccuracies. Since information is utilized only at

discrete points, small wavelength components are not resolved

sufficiently, and those shorter than the length of a grid interval not

at a11. The qdestion of stability in regard to finite difference

equations can be addressed in terms of the growth in amplitude of

frequency harmonics of the solution, and it is subsequently related to

the ratio of the coarseness of the physical grid and the tlme step

increment, in say an initial value problem. The iterative updating of

the solution from a given time level to a new level at later is called

the elemental marching step. Depending on whether the numerical scheme

is of the implicit or explicit type or a mixture of tnese two types,

certain frequency harmonics can experience unlimited growth in amplitude

as the elemental marching steps are performed. The numerical scheme is

said to be unstable if any frequency dominates the solution in such a

physically unwarranted fashion. Restricting the time step to conform to

the Courant-Friedrichs-Lewy (CFL) (Ref. 25) condition generally assures

that such components will not grow exponentially, as long as additional

destabilizing influences do not exist beyond those associated with the

elemental marching step. Certain methods of enforcing the boundary

conditions may lead to instability regardless of satisfaction of the CFL

condition. Exact conditions for stability are not attainable for most

time dependent and nonlinear problems. Recourse is often made to linear

stability crlteria obtained by neglecting nonlinear effects. This is
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helpful in Jetermining guldelines on stability bounds in many instances.

The existence of stability and satisfaction of the consistency condition

are sufficient to insure that the finite difference solution converges

to the solution of a linear differential equation as the difference

intervals tend to zero (Lax's Equivalence Theorem). Unfortunately, a

similar statement cannot be madefor nonlinear problems. The properties

of existence, uniqueness, and stability are very important, but the

problem of determining whether a problem is stated correctly is also

very difficult. Someof these questions will be addressed further.

The nonlinearity of the inviscid transonic flow equations is the

main hindrance in the development of analytical methods capable of

solving these partial differential equations. Few instances arise where

this difficulty can be avoided. Use of the hodograph plane transforms

the basic eq_lations into a linear form by transposing the roles of the

independent variables. However, the hodograph transformation is

restricted to two-dlmensional flows, and even thetl, a trade-off exists

in that the boundary conditions are generally more complicated though

the equations are linearJzed. Thus, in most cases, the transonic flow

equations will be encountered in a nonlinear form. In addition,

shock-free if:viscid flow solutions are rare, and if they exist are

likely to appear as isolated solutions which are close to solutions

containing shocks. This section will discuss someof these aspects and

how they enter Into consideration whendevising finite difference

methods applicable to transonic flows. With respect to numerical

efforts, on1_ a few cases will be considered which have a bearing on

the present work.
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Muchof the progress achieved in the development of numerical

methods for steady flows has been Found to extend directly to unsteady

applications. In this regard, steady flows are often solved as

converged soIutlons of unsteady problems, asymptotically reaching

steady state through real or pseudo time. Mention will be made of both

unsteady as we_l as steady inviscid flows. Since this work solves a

hyperbolic type equation due to the introduction of time as another

independent variable, the unsteady perspective will be stressed. The

efficient and accurate solution of a given flow, whether steady or

unsteady, r_quires proper numerical simulation of the dominant physical

phenomena. Hence, with the understanding that the proper numerical

approach is more fully appreciated _f the physical aspects of the

problem are first understood, additional features pertaining to

transonic flows should be stated beyond merely recoga_zing their

nonlinearity. Transonic flows are characterized by the following

traits: sensitivity to small perturbations; weak decay of these

fluctuations as they propagate laterally; slow global adjustment to

local disturbances; mixed nature with supersonic regions embedded within

subsonic regions; and likely presence of surfaces of discontinuity such

as shocks. Simple and accurate treatment of shocks is of primary

importance In providing efficient numerical schemes for transonic flow.

Therefore, a brief description of their nature will be given along with

a quick review of how they are incorporated into the numerical modeling.

A slmpIif_ed picture of shock waves can be provided if viscous and

heat conduction effects are neglected while considering the response of

a flow to a disturbance. The placement of a thin body in a uniform

stream which approaches it at high subsonic or supersonic speeds
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produces a discontinuity in the pressure field. This discontinuity

results because high pressure pulses propagate more rapidly than low

pressure ones and shock waves invariably form by coalescing pressure

waves originating from any finite disturbance. The pressure waves must

be compression waves in order for a shock to form, never expansion

waves. In actuality these discontinuities are smeared out by physical

dissipative effects which are absent when viscous and heat conduction

effects are discounted; only in the limit of zero viscosity do shocks

appear as discontinuities. However, the mathematical description of a

shock Is consioerably simplified by neg]ecting these dissipative

mechanlsms and the approximation to reality is quite good in most cases.

It can be shown for unsteady plane flow that any disturbance that

compresses the medium will eventually lead to a breakdown in the gas,

i.e., a discentinuity will develop when a simple plane wave produced by

a compression Force propagates into a gas at rest. An example

consisting of a limiting form of Burger's equation will illustrate the

formation of a discontinuity from an initlally smooth wave. It will

also serve the purpose of introducing some concepts related to nonlinear

partial differential equations that are basic to their understanding.

In fact, many of the fundamental investigations concerning numerical

computations deal with this particular equation, and thus it serves as

a natural springboard to pass to more complicated equations by providing

valuable core material underlying this area.

Burger's equation is a widely studied nonlinear equation modeling

both convective and diffusive processes and is of the form

au au a2u (3.1)

@_ + u _-_ = _ Bx 2
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where u, x, t, and D can be taken as the nondimensional velocity,

distance, tlme, and diffusion coefficient, respectively. Actually

Eq. (3.1) _s _re accurately classified as a quasi-linear equation since

it is linear with respect to the highest order derivative terms. We

wlsh to examine the special case of _ : 0; no diffusion occurs and

Eq. (3.1) reduces to the homogeneous form

8u au
8-t+ u _ : O. (3.2)

Specifying an initial condition

u(x,t)It=O = u(x,O) =
sin(x) (3.3)

defines an initial value problem with a smooth initial curve. The

solution to this problem is given in implicit form by

u - sin(x - ut) : 0 (3.4)

which is readily verified by its substitution into Eqs. (3.2) and (3.3).

This solution is unique but exists only within a limited range of the

Initial curve. The solution is sketched in Fig. 3.3 for several time

intervals. The waveform of the solution can be seen to progressively

distort from the smooth shape at time t = 0 to a discontinuous shape

at time t : 2 in the manner described above. This demonstrates an

important property of the solution to nonlinear equations: they can

develop discontinuities even with smooth initial data; this is in

contrast to the linear case where discontinuities can arise only if the

initial data are discontinuous. This indicates the necessity for

admitting possible discontinuous solutlons when solving nonlinear

problems. More will be said later concerning discontinuous solutions

to the equations of gas dynamics.
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We return to the examlnatlon of Burger's equation by connecting it

to the theory of partial differential equations. Thls will provide

access to some valuable geometric and analytic insight. To carry this

out, observe that equation (3.2) is a quasi-linear differential equation

in two independent variables, x and y, of a general form

8u 8u
P _ + Q _ : R (3.5)

where P, Q, and R may be functions of x, y, and d only;

furthermore, all variables and their first derivatives are continuous

and p2 + Q2 w O. In the special case presented above, P = u, Q = l,

and R = O, and where in Eq. (3.2), t has taken on the role of the

variable y that appears in the more general Eq. (3.5).

A general theory exists for equations of this type which can be

drawn on in order to provide analytical results (Refs. 26 to 27). The

solutlon to Eq. (3.5) can be interpreted in terms of an integral surface

deflned through the function

F(x,y,u) = C (3.6)

where C _s a constant and u satisfies Eq. (3.5); such a surface can

be visualized geometrically in an x,y,u-space. The most general

solution to Eq. (3.5) is a function G(Ul,U 2) where uI and u2 each

satisfy the equation and correspond to separate values of the constant

C, say C I and C2, appearing in Eq. (3.6). Thus uI and u2 are

two distinct integral surfaces. The function F can be introduced into

Eq. (3.5) resulting in an equation in which u can be considered

independent along with x and y. The partial derivatives of F with

respect to both x and y separately are each equal to zero as can be

seen immediately from Eq. (3.6). These can each be used to give
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expressions for one of the partial derivatives appearing in Eq. (3.5)

which then assumes the following symmetrical form

aF aF aF
P _-_ + Q _-_ + R _-_ = 0

provided that

(3.7)

aF
a_ _0.

This can be thought of as an expansion of the scalar product formed from

vectors having components P, Q, R and aFlax, aFlay, aFlau in some

appropriate orthogonal Cartesian system. Geometrica]ly this has

significance in that it shows that the vector with components P, O, R

is perpendicu]ar to the normal to the integral surface at any point.

Thus, the vector lies in the plane tangent to the surface at any point

and its direction specifies a fundamentally important direction on the

surface called the characteristic direction. This direction is unique

at any point but, in general, differs w_th location. Starting at any

point in the surface and fol]owing the characteristic direction along

the surface results in a curve being traced out ca]led the

characteri_tlc curve; hence, a characteristic curve is everywhere

tangent to the characteristic direction. The projection of the

characterisiic curves onto the x,y-plane defines the physical

characteristics.

An equivalent way of expressing Eq. (3.5_ can be given that

promotes its visualization geometrica]ly by introducing certain

parameters. This will aid in the construction of solutions which pass

through a g_ven curve. Extension of these concepts to higher d|mensions

provides an approach to constructing solutions for higher order problems

by the method of iteration. From the theory of quasi-linear
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differential equations, the characteristic curves are defined in terms

of the following set of first order ordinary differential equations

dx _ P(x,y,u)
ds

dy Q(x,y,u) (3.8)
ds =

du R(x,y u)
ds -

where s is a continuous parameter varying monotonically along these

curves. A two-parameter family of integral curves satisfies Eq. (3.8)

since there are two independent differential equations in this set,

i.e., the set cf equations depends on s and two additional constants.

It is convenient to introduce new variables such that one is s which

varies along each characteristic and the second variable • is

introduced as a parameter which is constant along any characteristic

curve but varies from curve to curve. Together, the curves form a one-

parameter family of solutions sweeping out the solution surface defined

in Eq. (3.6) for a given value of C. Since the solution of the

ordinary differential system admits a two-parameter family of solutions,

an arbitrary function must be introduced to define a particular one-

parameter f_mily subset which satisfies Eq. (3.5). This arbitrary

function relates the two arbitrary constants that arise from the

solution of Eq. (3.8).

Specification of this function gives rise to an initial value

problem for which the requirement that the solution surface pass through

a particular curve establishes an initial value problem and fixes one

parameter. The original independent variables can be defined in terms

of the new variables as
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x = x(s,_)

y = y(s,_) (3.9)

u = u(s,_)

such that x, y, and u satisfy the initial condition that

x = x(O,_)
0

Yo = y(O,_)

uo = u(O,_).

Here the value of s along the initial curve _ is arbitrarily chosen

as zero. It should be mentioned that the data curve Xo' Yo' Uo needs

only to be continuously dlfFerentiable.

Solutions to the above system exist in some neighborhood of the

given initial curve if the above transformation has the property that

the Jacobian

(3.10)

O = XsY_ - YsX (3.11)

does not equal zero. This guarantees that the transformation is

invertible such that s and _ can be expressed in terms of x and

y. In this case the solution u(s,_) of Eq. (3.9) can be expressed as

u(x,y) and is generated by the characteristic curves which must lie

entirely in the surface. Should the Oacobian vanish along _, then

either _ is a characteristic curve and an infinite set of solutions

exist or it is a noncharacteristic curve and no continuously

differentlal solution exists. This statement applies to any other curve

displaced from the initial curve. In general, should any two solutions

uI and u. pass through the same curve, then it must be a

characteristic curve. The significance of these remarks will become

clear when requirements are discussed concerning the proper treatment of

shocks as discontinuities.
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By returning to the example of Burger's equation, the parametric

approach can be applied directly giving information on the solution

domain. Assume that a solution surface exists satisfying the

homogeneous Burger's Eq. (3.2) which is generated by a one-parameter

family of curves passing through the initial curve defined by Eq. (3.3).

The first two expressions in Eq. (3.8) define the family of

characteristics and the last one defines the solution surface in terms

of the parameter which is constant along each curve. This can be can

seen by carrying out the integration of Eq. (3.8) by recalling that

P : u, Q - I, y = t and, since it is homogeneous, R = O. The solution

which satisfies the equation and the condition that it initially be a

sine curve is given paFametFically as

x = s sin _ +

t = S (3.12)

u = sin

(Ref. 28). The Jacobian of the transformation is

XsY_ - YsX = -(l + s cos _). (3.13)

It can be seen that for certain values of s and _ the Jacobian

will be zero. The locations where it vanishes are of interest, and the

projection of these locations on the physical plane is termed the

envelope. Such an envelope denotes positions where projections of the

characterlstics cross which, in turn, implies that the solution is no

longer single-valued. The location of the enveloDe For this example can

be determined by introducing the variables x and t into Eq. (3.13)

and then setting this equation for the Jacobian equal to zero. The

resulting curve for the envelope is then glven by the relationship:

x = cos -I -I ± (t 2 _ i)I/2
t (3.14)
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The solutlon for the envelope is sketched In Fig. 3.4. Slnce the value

of R is zero for this problem, the third expression in Eq. (3.8) shows

that the solution is constant along a characteristic curve which is

verlfled by the last relatlon in Eq. (3.12). In the region to the right

of the curves AB and AC in Fig. 3.4, characteristic curves cross and

Eq. (3.14) ts multi-valued; this corresponds to the dotted portion of

the curve at t = 2 shown in Fig. 3.3. The discontinuity arising in

the solutlon is a result of the crossing of characteristic curves, each

associated with a constant value of u. Since the value of u is

different for characterlsttcs Intersecting at the discontinuity, there

ts a resulting jump in the value of u associated with these

confllctlng characteristics. This exhibits a general feature of

nonlinear equations. A discontinuity, whlch may be present in a

nonlinear flow, does not ]le along a characteristic curve. This is in

contrast to a llnear problem where discontinuities are present only if

the lnltlal data are discontinuous, in whtch case they are propagated

along the characteristics. More speclfically, It can be stated that

shocks do not lie on characterlstic curves but rather separate the flow

Into dlstlnct regions dlffering by jumps In certain physical quantities.

The Jump In the physlcal quantities must satisfy certain physical

crlterla. It is exactly these jump criteria which serve to slft out

the physlcally correct solution from the other mathematical solutlons.

Because of the presence of these discontinuitles, it is necessary

to relax the stipulation that a solutlon be continuously differentiable.

Thls fact stems from conslderation of integral conservation laws which

equate the rate of change in a quantity In a region to its flux at the

boundary of the reglon. We can expand the definltion of u to that of
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a generalized density of a quantity and denote its flux as f. The

integral form cF the conservation law for the quantity is

for a general domain _ of arbitrary dimension with bounding surface S

possessing an outward normal B and where dx signifies the

differential :'volume" element. Here, we follow the presentation of Lax

(Ref. 29) who omits the vector symbols in the scalar product. The

conservation equation states that the rate of increase of the quantity

in the region equals the negative of its outflow through the bounding

surface. This holds for quantitles like mass, momentum, and energy but

not, in the general case, for entropy or internal energy for example.

Equation (3.15) is a general relationship to which the divergence

theorem can be applied to the right-hand side, for sufficiently well

behaved functions, which transforms it to

(u t + div f) dx = 0

with the time derivative moved inside the integral and denoted as a

subscript. For u and f which possess continuous partial

derivatives, the derivative form of the conservation law follows

ut + div f : O. (3.17)

This is the so-called divergence form of the differential conservation

laws. The requirement that the derivatives be continuously

differentlable implies that discontinuities such as shocks must be

treated as Internal boundaries separating the total domain into regions

which by themselves possess smooth solutlons; Eq. (3.17) then can be

satisfied by these plecewise continuous solutions. Lax calls the

(3.16)
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solution for the total region, including the discontinuity which

satisfies the _ntegral law, a generalized solution so as to distinguish

it from a regular solution which must be differentiable.

Recall the example of the sine wave given above. The solution near

the initial curve begins as a generalized solution, which is regular,

but evolves into a generalized solution that is no longer continuous.

The concept of a discontinuous solution is fully justified provided that

it is physical;y meaningful. However, discontinuous solutions which

satisfy the differential conservation laws may not be unique. The

criterion that is used to distinguish the physically relevant solution

is that the jump conditions existing across the discontinuity must

satisfy the physics of the problem.

Whenshocks are treated as discontinuities, the differential

equations must be replaced with equivalent upstream and downstream

boundary (or "jump") conditions. These are knownas the Rankine-

Hugoniot relations. They can be obtained from the conservation laws,

the Euler equations, by applying these laws separately to a control

volume which contains the shock and which movesat the shock velocity.

These relations specify the changes in the thermodynamic properties

such as temperature, pressure, and density occurring across a shock

without considering the detailed physics within the shock. In this way

physically meaningful solutions are obtained. The Rankine-Hugoniot

relations, _hich conserve mass, momentum,and total energy, were

actually preceded by a set of analogous equations in which entropy was

conserved rather than energy. Since entropy is not conserved across a

shock, these analogous relations are normally discarded in favor of the

Rankine-Hugoniot relations. Since shocks are the only meansof entropy
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production it; inviscid flows, either set of conservation equations would

be valid in a flow without shocks.

Some comments should be made concerning the potential equation

derived from Euler equations by requiring the flow to be irrotational.

By Crocco's theorem for steady flows, an irrotational flow is isentropic

if the flow has constant total enthalpy; however, the flow may be

rotational and still be isentropic. In this sense, isentropic flow is

consistent with irrotational flow in that it imposes no additional

restrictions on steady flows with uniform stagnation enthalpy. Thus

potential calculations generally assume an isentropic jump, and

consequentli/ either conservation of mass, momentum, or energy must be

sacrificed to prevent an overly determined system. The choice of

conserving mass and energy is usually made, based mainly on the fact

that they are bath scalar quantities and that, for steady flows,

Integratlon of the energy equation implies constant enthalpy along

streamlines. Klopher and Nixon (Ref. 30) review the three possible

pairings for the conservation quantities and discuss the likelihood of

conserving mass, momentum, and energy by allowing entropy changes to

occur across the shock.

Conservation laws can also be expressed for a system of equations

and take the differential form

auj
a-t--+ div f_ = 0 j = 1,2,3,...,n

for n unkno_n quantities and their respective fluxes fJ, where each

flux is, in geperal, a nonlinear function of all the uj. This can be

written in an equivalent form where the divergence operator is replaced

by differential operators appearing as an implied double summation over

both repeated dummy indices i and k as such:

(3.18)
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O. j = l,...,n (3.19)

The index i ranges up to the number of independent variables not

including time; the index k ranges over the number of n unknowns.

This notatlon is closely connected to matrix notation. This can be seen

by identifying u as well as the partial derivative factors in the

terms with matrices. Let W be a column vector of the unknowns. Then

the following matrices

Nt=

8u l

at

au 2 af_

8-t-- Ai = au k =

l I "'" I
au @u au

iBu2 au 2 " au 2

_B-t- _UUn Bun "'" au n

au II

au 21

w×i--  3.20>

au nl

lead to the compact matrix representation

Wt + AiWxi = 0
(3.21)

for a system of n equations with the implied sum over each of the i

independent variables other than time; the matrix Ai is an n by n

matrix. This notation is quite prevalent in the lite_-ature. The reason

for introducing the system of quasi-linear equations is that the Euler

equations are such a set of equations and the equation that will be

solved herein is a limiting case of them.

The Euler equations can easily be written in vector form for two-

dlmenslona] unsteady flow wlth velocity components u and v in the

respectlve dlrections of x and y as
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where

W =

Nt + Fx + Gy = 0

P

pu

pV
F =

B

pu

pu2 + p

puv G

pv

puv

pv 2 + p

(3.22)

and p is the density. Here, e is the specific internal energy and h

is the specific enthalpy for an ideal gas and q2 = u2 v2.+ The

pressure is given by the equation of state p = pRT for a perfect gas at

temperature T, where R is the universal gas constant. Obviously F

and G take on the role of f! for i = ] and i = 2 corresponding
j

to the flux in the x and y directions, respectively. The attached

subscripts denote partial differentiation with respect to the indicated

variable. For isentropic flows, the pressure is related solely to the

density through the relationship pp-_ : constant where _ is the

ratio of specific heats. The Euler equations then simplify such that

W, F, and G r'educe to only their first three elements.

The jump conditions relating the upstream and downstream states

adjacent to a shock are given by Lax (Ref. 29) as

for a smooth shock surface moving with speed v s . The notation is the

same as that used for Eq. (3.15); however, the brackets indicate the

jump values of the enclosed quantities occurring across the shock. The

value of the shock speed v s is limited above by the speed of sound

preceding the shock, and bounded below by the speed of sound on the high
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pressure side. This guarantees that the shock will experience an

entropy increase rather than a decrease, a feature that the Rankine-

Hugoniot relations fail to discriminate. Since the initial conditions

are not sufficient in themselves to determine a unique solution, these

are the supplemental conditions needed to correctly specify a shock.

Failure to use either the correct conservation equations or the

conservation form leads either to incorrect shock speeds or strengths.

The process of calculating the position of a shock and the

subsequent application of the Rankine-Hugoniot relations is known as

shock fitting. The use of shock fitting provides an accurate method of

handling shocks and it also provides sharp resolut!on since they are

treated as discontinuities. Shock fitting procedures were used as early

as the year 1948 by Emmons (Ref. 31) who used a somewhat different

approach in establishing shock jump conditions for flow over airfoils.

The direct application of these fitting techniques is handicapped since

the positions describing a shock surface must be calculated, often

resulting in lengthy trial and error procedures. This is particularly

troublesome since, in general, a shock moves through the medium along

an undetermined path. Numerical schemes which fit shocks frequently

exploit the theory of characteristics since certain quantities are

constant, or nearly so, along the characteristic directions.

The notion of characteristlcs which was mentioned above in regard

to first order equatlons plays an important role in the development and

understanding of numerical methods for systems of hyperbolic equations.

To see how the theory of characteristics enters, it will be simply

stated that the matrix for the system of equations in Eq. (3.21) can be

transformed by multiplying it by a linear matrix which results in an
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equivalent set of equations which have an interesting property. This

property is that each of the resulting equations contain differentiation

in a single direction. This is called the normal form for a system of

hyperbolic equations. The directions of differentiation are the

familiar characteristic directions which were presented above in the

more easily understood form of first order equations with two

independent variables. Nevertheless, the characteristics generalize in

the case of higher order equations or systems of equations with more

than two independent variables; the main difference is the obvious

increase in diversity and complexity exhibited when more variables are

involved. Higher order equations are often treated as systems of first

order equations by introducing extra dependent variables.

For the unsteady one-dimensional Euler equations, three

characteristic directions emanate from each point in the fluid. Along

these characteristic curves information propagates, either in the form

of waves or fluid motion. Sound waves flow along forward and rearward

characteristics while particle paths follow a characteristic upon which

the entropy is constant and which lies between the other two. For

isentropic flow, certain quantities known as Riemann invariants can be

constructed from the fluid variables such that one is constant for the

forward characteristic and another for the rearward direction. These

directions are sketched in Fig. 3.5. Signals reaching a point N, which

Just happens to coincide with a lattice point in the flow, have paths

labeled X+ and X- representing the forward and rearward

characteristics, respectively. In general, the characteristics do not

follow paths connecting grid points. For nonisen_ropic flow, quantities
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analogous to the Riemann invariants can be defined which are

approximately constant, at least for small time periods.

The fact that initlal data propagated along characteristic

directions determine the nearby solution to such hyperbolic problems

leads to the important concept of domain of dependence. Data outside

the characteristic rays shown in Fig. 3.5 cannot influence the solution

at point N. Only data within the region influences the solution. This

region is called the domain of dependence. Similarly, the

characteristics leaving a point at time t will define a domain

influenced by that point later on. It is important for stability

reasons that these domains be respected while carrying out the finite

difference calculations. The time-step must be adjusted to the spatial

grid interval so that the analytical domain of dependence is contained

within the computational domain of dependence. This restricts the

maximum time-step on the basis of qualitative physical arguments. For

example, inspection of Fig. 3.6 reveals that information from the three

clrcled grid points at time level t would suffice to provide a11

necessary data for point N at time t + At. The computational domain,

which is represented as straight dashed lines, contains the physical

domain of dependence framed by the solid lines. For double the time-

step, say in the absence of information at time t, then five grid

points of data at time t - At would contain all the information

influencing point N. The region between the solid and dashed lines on

each side of the domain of dependence represents information which is

not needed at point N but which it sees nevertheless. This transfer of

spurious data w|ll occur as long as the characteristics do not connect

the grid points; in general they do not and, consequently, loss of



56

N

• • • _% • • • t + _t

g )
"/. .- _o ""• o/' % • t - At

y

X

FIGURE 3.6. - NUMERICAL DOMAIN MUST CONTAIN THE PHYSICAL

DOMAIN OF DEPENDENCE FOR STABILITY.



57

accuracy results. The domain of dependence principle places a.

qualitatlve restriction on the time-step. This is of special importance

to expllclt numerical schemes. Implicit schemes have the advantage that

time-step limitations imposed for stability may be relieved or removed

altogether. In any case, stability requirements are usually not

available for a nonlinear problem but hopefully estimates can be

acquired from a linear counterpart or numerical experiment.

Further inspection of the domain of dependence is required in the

instance of embedded shocks. To illustrate this case, Fig. 3.7' presents

a sketch slmilar to those just reviewed but which now includes a shock

path in the computational plane. Assuming the flow to be supersonic on

the left (the upstream side) of the shock and subsonic on the right, two

sets of characteristics can be identified with points N and N+I residing

in the supersonic and subsonic zones, respectively. In the supersonic

zone, It is clear that all soundwaves travel downstream, and hence, both

X-characteristics have positive slopes; i.e., they both propagate

downstream. For the subsonic zone, one characteristic points upstream

and one downstream. Information affecting a supersonic point must come

from the upstream direction, commonly referred to as the upwind

directlon. Subsonic points are influenced by signals from each

direction. Finite difference schemes take this into account by upwind

differencing at supersonic points and central differencing at subsonic

points. Details differ for various schemes on the means of switching

from one type of differencing to the other when the flow changes from

supersonic to subsonic.

A novel scheme was recently introduced by Moretti (Ref. 32) who was

inspired by the physical implications of the method of characteristics.
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The scheme is a second order accurate method capable of tracking weak

shocks and is currently being improved, with initial testing belng

conducted mainly on unsteady problems in two space dimensions. It is

appropriately called the X-scheme and employs shock fitting to specify

the entropy jump and to correct the shock speed for shocks that are

Initially predicted as being isentropic. Other investigators have made

contributions to this technique, in particular Zannetti (Ref. 33) who

introduced the use of generalized Riemann invariants. Sti11, while the

method offers hope of accurately tracking and computing shocks, its

forthwith use for three-dimensional flows has yet to be demonstrated.

The difflcultles in using shock fitting procedures for complicated flows

encouraged efforts for alternative methods.

An alternative method which models the dissipative nature of shocks

was introduced by von Neumann and Richtmyer (Ref. 34). Their approach

was to add terms, mocking the physical effects of viscosity, to the one-

dimensional unsteady inviscid flow equations. This was done in a

discriminatory fashion by prescribing the additional terms as nonlinear

functions of the dependent variables which have the following three

features: to act in a strong manner at a shock location; to have a weak

effect away from the shock; and to remain compatible with the Rankine-

Hugoniot relations for shocks sufficiently thin when compared to the

characteristic flow dimensions. The overall effect of this approach was

to smear any shock smoothly over an interval of distance rather than

produce a sharp discontinuity. The thickness of a typical smeared shock

is on the order of the grid size interval which theoretically can be as

fine as desired, though practical considerations limit the spacing

refinement. The thermodynamic variables therefore acquire a continuous
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but rapid variation in place of a sharp jump across a shock. Since

these terms are arrived at based only on considerations of physical

reasonableness rather than exact laws, a certain amountof arbitrariness

is introduced; this would likely be compoundedin generalization to

higher dimensions. It should also be emphasized that the modifications

introduced by including these dissipative terms is purely a mathematical

artifice and the success of the technique relies on properly specifying

the amount and distribution of artificial viscosity. The inclusion of

physically reasonable, yet artificial, terms to provide treatment of a

shock discontinuity illustrates a prevalent circumstance appearing

variously in computational applications; namely, the acceptance of some

loss in one property for a gain in another. Here this occurs with a

highly simplified treatment of shocks being obtained at the expense of

introducing somenumerical error into the solution by using somewhat

arbitrarily defined dissipative terms.

The introduction of artificial viscosity preceded the advent of the

high speed computer but was recognized, along with other developments in

numerical metSods, as being most useful with automatic computing

capability. The rapid growth in computer capabilities signaled a trend

toward application of highly simplified procedures suitable for

repetitive machine calculation. The stage was set for numerical

calculation of nonlinear flows with shocks. The amount of numerical

work dealing with transonic flows is overwhelming and precludes any

complete review here. A numberof excellent surveys of developments in

transonic flow_ have been made(Refs. 35 to 39. Therefore, only a brief

review will be given to highlight certain key aspects. As in the case

of analytical treatment of propeller theory, it is useful and convenient
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to sketch the numerical approach by focusing on tne numerical

developments associated with wing applications. Most of the fundamental

advances in the numerical treatment of external transonic flows have

come about l_rgely due to procedures devised to predict steady and

unsteady flows over airfoils. These flows possess the characteristics

listed above and yet offer examples simple enough to be treated directly

with various techniques. This quality affords the opportunity to

compare the numerical results and lend credibility to them; also,

experimental data or exact analytical solutions for restricted cases can

often be obtained to qualify or corroborate the numerical results.

An appropriate beginning for the discussion of transonic flows

over airfoils is the work of Magnus and Yoshihara (Ref. 40). This work

represents the first direct finite-difference procedure for transonic

flow with embedded shock waves. The unsteady Euler equations, expressed

in conservation form, were used to solve two-dimensional, steady,

supercritical flows about lifting airfoils. These unsteady equations

were numerically approximated using a modified Lax-Wendroff finite-

difference technique. Steady solutions were obtained by allowing the

unsteady solutions to converge to a time-dependent state. The advantage

in treating a steady flow as a limit of an unsteady one is that the

steady equations are a mixed elliptic-hyperbolic system whereas the

unsteady equations are hyperbolic. The gain realized from this

uniformity of equation type more than offsets the increase in complexity

caused by adding time as another independent variable. This approach

especially simplified the problem since the locations where the steady

flow equations switch type are unknown and must be found as part of the

solution process. Use of the unsteady formulation eliminates the need
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to devise distinct numerical schemes particular to the subsonic and

supersonic regions. Of considerable importance was their method of

introducing numerical viscosity. They introduced artificial viscosity

in two separate ways. One of the ways diffusion was introduced arises

from the formulatlon of the second order differencing scheme. Lower

order terms in the truncation error are retained which behave similarly

to real viscosity by reducing all gradients in the solution. The higher

gradient locations naturally were affected more than the lower ones.

This serves the same purpose as the artificial viscosity introduced by

von Neumann and Richtmyer in that it automatically captures a shock as a

high gradient region joining regions of strongly dissimilar flows. A

second way of introducing damping terms was brought about by using

spatially weighted averages of the dependent variables in the leading

terms of the Taylor series expansions expressing the updating of these

variables. The numerical v_scosity can be reduced in each case by

refining the grid since the the damping terms are in fact truncation

error terms. A trade-off is reached between stability and accuracy.

The solutions obtained were quite time consuming, in good part due to

the absence of a suitable grid, but served as benchmarks for more

approximate calculations to follow.

Murman and Cole approached the transonic flow problem along the

lines of small perturbation analysis. They first solved a simplified

form of the two-dimensional steady transonic equation

I(2) = 0 (3.24)
x x - @yy

for the perturbation potential _ with what was later realized as not

being a fully conservative scheme (Ref. 41), and _ubsequently with a

nearly fully conservative scheme (Ref. 42) in which the correct shock
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jump condition was obeyed, at least in practice as evidenced by the

results. The perturbation potential is the velocity potential minus the

free stream potential. Here, and in what follows, the x coordinate is

in the free-stream direction; the y direction is normal to the free-

stream flow. The use of a perturbation technique limits these efforts

to thin airfoils but greatly simplifies the boundary condition treatment

at the airfoil surface. They used an iterative line relaxation

procedure to sweepdownstreamalong successive grid lines aligned

transverse to the flow. Over-relaxation was used in the subsonic

regions of the flow. The use of the successive line over-relaxation

(SLOR)procedure improved the computational efficiency by about an order

of magnitude over that of Magnusand Yoshihara.

The use of such a straightforward procedure for the calculation of

mixed flow was possible due to their type-dependent differencing scheme.

Th%swas their main contribution and is carried out as follows. During

the course of the calculation, the velocity at each grid point along the

relaxation line under consideration is comparedwith the speed of sound.

If the velocity is supersonic, that point is implicitly backward

(upwind) differenced in the streamwise direction. If the velocity is

subsonic, central differencing is used. This type-dependent

differencing respects the domainof dependenceand furthermore, proved

simple to implement. An important development was included in the fully

conservative schemewhich significantly improved the shock calculations.

A special difference operator was introduced which was used at grid

points where the flow decelerates through the speed ,)f sound (ruling out

any supersonic-to-supersonic shocks). The difference operator thus

operates at shock points and is called a shock-point operator. It
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should also be mentioned that a switching operator (Ref. 43) is used at

sonic points, where the flow accelerates through the speed of sound.

The sonic operator poses no special problem since the flow is continuous

at sonic points. However, it should be emphasized that four operators

exist as fellows: a central operator at subsonic points; an upwind

operator at supersonic points; a sonic operator; and a shock-point

operator. The shock-point operator effectively switches the difference

schemefrom the implicit backward hyperbolic operator upstream of the

shock to the centrally differenced elliptic operator past the shock in

such a manner that the combination of all three operators is fully

conservative.

This switching procedure can be looked at from a flux viewpoint by

imagining the grid points to be enclosed by corresponding cells packed

tightly. Use of the switching operator balances the flux internally so

that for any contiguous group of grid cells, the net flux of a quantity

at their external border is zero. Since the initial type-dependent

schemelacked the shock-point operator, flux was not necessarily

conserved at the internal shock boundaries and consequently the scheme

was not fully conservative even when the derivatives were otherwise

placed in conservation form.

Several codes have originated based on the Murmanand Cole method.

The first one developed was by Krupp and Murman(Ref. 44) which used the

nonconservative form of the difference equations. Murman,Bailey, and

Johnson (Ref. 45) later developed a code (TSFOIL) using the fully

conservative form of the difference equation given by

1 - M_ _x 2 x _YY
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or, in a general form, with the physical variables scaled, written as

( _+ 1 -2) ~2 _xK_px - + @_ = O. (3.26)
X

The relations between the physical and scaled variables are given as

follows"

where

.-213. n: 0 moo(P

(3.27)

K -
M2m62/3

The variable 6 is the airfoil thickness ratio, M is the free-

stream Mach number, and R is the ratio of specific heats. The

constants d, m, and n are the similarity parameters chosen to give

the desired form of the small disturbance equation. When d = m = n = O,

the Cole form (Ref. 46) is obtained. The Sprieter form (Ref. 47) is

given by defining d = 2 and m = n = 2/3. Finally, the Krupp form

(Ref. 48) is obtained by selecting d = 7/4, m = I/2, and n = 3/4. The

Cole choices for the transonic similarity parameters are based on

mathematical simplicity. The Spreiter and Krupp choices are made to

give accurate approximations over a wide range of free-stream velocity

and thickness ratio. The conservative form of the equations produce

shocks with nearly the correct strength and speed. Nonconservative

formulations exhibit the fortuitous feature of having the shock position

displaced upstream accompanied by a smaller pressure drop across the

shock, more in agreement with experimental viscous measurements. Such

features make the nonconservative results more appealing to some airfoil

designers.
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A few loopholes present in the Murman-Cole shock operator were

closed with the simple modifications made by Engquist and Osher

(Ref. 49). They not only analyzed the two-dimensional small disturbance

equation, Eq. (3.26), but solved the time-dependent form:

(K_ _ + 1 _21 N - ~ = O. (3 28)2 _x, + _yy 2_xt
\ X

Convergence to the steady state was reached after a sufficient number of

iterations.

Artificial viscosity was not added by design in the numerical

formulations of the type dependent schemes mentioned above. However,

enough is generated due to the upwinding operators that shocks are

captured over 3 or 4 mesh w%dths using the Murman-Cole scheme and over

I or 2 mesh widths using the Engquist-Osher scheme. The use of type

dependent d!fferencing destroys the symmetry that would otherwise occur

in the equations and which would admit expansion shocks as well as

compression shocks.

The SLOR procedure used by Murman and Cole was replaced by

approximate factorization (AF) procedures by Ballhau_ and Steger

(Ref. 50) in their investigation of the low frequency form for the

transonic slaall disturbance equation which is given in the form

2 M _xt = Vc_xx + _
(3.29)

for an airfoil of chord E undergoing periodic motion of frequency m.

The free-stream velocity is U and Vc : I - M2_ - (K + I)M_ x. The

flow is locally subsonic or supersonic when Vc is positive or negative,

respectively. The ratio _E/UE determines the time scale and is called

the reduced frequency. It relates the time a mean fluid particle takes
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to traverse the length of a chord to the time required for one blade

oscillation. The appearance of the reduced frequency is attributed to

the fact that in Eq. (3.29) the variables _, x, 7, and t are

additionally scaled by _U , _, C, and I/u, respectively. This low

frequency form of the equation is valid for reduced frequencies much

less than one. For most transonic flows the low frequency equation is

adequate since the low frequencies associated with the slowly moving

upstream waves dominate the solution near the airfoil. The higher

frequency waves travel quickly downstream and do not have a chance to

build into strong waves. Fortunately, the low frequency oscillations

are adequately analyzed with coarser time steps than those for high

frequencies. For this reason Ballhaus and Steger examined implicit and

semi-implicit numerical schemes that would allow them to remove the

time-step limitations of explicit schemes so that larger time steps

could then be taken which were limited only by accuracy considerations.

The AF procedures were introduced to reduce the computational work

required by SLOR techniques. The AF procedures spl_t the difference

equations into simple factors which are easily invertible. The factors

are usually solvable by tridiagonal or quadridiagonal algorithms such

as the Thomas algorithm. Among the schemes studied was the ADI method

developed by Peaceman and Rachford for the two-dimensional Laplace

equation and extended to multi-dimensions by Douglas and Gunn (Refs. 51

to 52). The ADI scheme was shown to be an AF type scheme. The

stability of the schemes was compared and their shock capturing features

were examined.

The ADI technique developed by Douglas and Gunn was used in the

numerical solution of the unsteady, three-dimensional flow about
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helicopter rotors (Refs. I to 5) using the small disturbance approach.

A numerical code was written and used to analyze the flow in the

transonic tip region of the rotor blades. The strong similarity in the

form of the helicopter equation to that of the propeller problem led to

the adoption of the code, w_th some modifications, for the present

effort.



IV. GOVERNINGEQUATION

This chapter presents the potential equation and the development

of an approximation to it which is valid for small disturbance flow

about thin, lightly loaded propeller blades. First, the general

potential equation in an inertial coordinate system will be developed

for isentropic flow of a perfect gas with no other approximations made.

Then this equation will be transformed to streamwise coordinates. The

potent|al equation in rotating coordinates will then be given as

developed in {Ref. 5) for a coordinate system attached to a helicopter

blade. Following this, the equivalent tensor equation valld for any

coordinate system will be presented for an accelerated system. Finally,

the small perturbation equation for generalized helical coordinates will

be derived.

4.1 Potential Equation in an Inertial Coordinate System

Consider a flow with uniform upstream velocity U directed

along the X-ax_s where X, Y, and Z are Cartesian coordinates with

corresponding velocity components u, v, and w. The continuity

equation can be written in the expanded form as

Pt + UPx + Vpy + WpZ + p(u X + Vy + wZ) = O. (4.1)

Bernoulli's equation for unsteady flow can be expressed in a form

giving the speed of sound

c as

2 2
C = C

c as a variation from its upstream speed

#_+I
2 (25t + SX + @Y + SZ ) (4.2)

69
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where the scalar • is the velocity potential defined through the

following components"

8_ B@ 8¢
w - (4.3)u = B--K ; v = a-7 ; @Z "

Thus, the fluid velocity is given by

= V@. (4.4)

For isentropic flow, the density and speed of sound are connected

by the relation

)2 / (I_-I)P--p== (_-= (4.5)

This relation can be used to eliminate the density in Eq. (4.1). Using

Eq. (4.5), performing the differentiation in the f_rst four terms in

Eq. (4.1), and multiplying the result by c2/p yields

1 [(c2)t + u(C2)x + v(C2)y + w(C2)z]+ c2(Ux + Vy + wZ) = O. (4.6)_+I

Bernoulli's equation, written for an unsteady flow in Eq. (4.2), can be

2
used to introduce the velocity potential into Eq. (4.6); replace c

in the equation using Eq. (4.2), and carrying out the indicated

differentiation yields

@tt + UCxt + VCyt ÷ W@zt + U(@xt + U@XX + V@Xy + WCXZ)

+ V(@yt + U@xy + V@yy + W@yz) + W(@zt + U@xz + V¢yz + WCZZ)

- c2(@XX + @yy + ¢ZZ ) = O. (4.7)

Rearranging terms yields a more symmetrical equation, viz.,

@tt + 2UCxt + 2V@yt + 2W@zt + (u2 - c2)@XX + (v2 - c2)¢YY

+ (w2 - c2)¢ZZ + 2UV@xy + 2UW@xz + 2VWCyz = O. (4.8)
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Variou_ approximations can be madeto Eq. (4.8) which itself is an

exact equatior_. For example, dividing it by c2 and allowing c to

approach infinity reduces the equation to V2¢ = 0 for an

incompressible flow. Similarly, other approximations can be madeby

removing cubic and even quadratic terms. As another example, in the

case of acoustic theory, a linear equation results for the subsonic and

supersonic regimes by neglecting certain terms and letting the

quantities c and u assumetheir free-stream values c and U ;

whereas a separate equation is obtained for the transonic regime since

local effects are more dominant, requiring retention of the local values

of c and u. Most approximate equations derived from Eq. (4.8) are

produced for the purposes of linearization. However, the goal here is

to arrive at an approximation that is consistent with this equation in

the limit of small disturbances, yet valid for nonlinear transonic

flows.

4.2 Potential Equation in Streamwise Coordinates

Before beginning our discussion of the disturbance potential for

the propeller problem, it is worthwhile to present Eq. (4.8) using

First, the magnitude of the total velocitystreamwise coordinates.

vector q is given as

q = lu2 + v2 + w21112

For any directional coordinate s, the directional derivative along

is simply

a a dX a dY adZ

as - ax ds + BY ds + az ds

(4.9)

(4.10)
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By referring to Fig. 4.1, it can be seen that dX/ds, dYlds, and dZlds

are the direction cosines which equal u/q, v/q, and w/q, respectively,

if s is a streamline. The second directional derivative is defined as

a2@ @s _ l lu2 _+a2@ v2 --+a2@ w2 --+a2@ 2uv 82@
as2 - s q2 ax2 By2 az2 axaY

Furthermore,

+ 2uw _ _ 2vw aYaz/"
(4.11)

a2@ 1 lu a2@ a2@ a2@ 1asat - q _ + v _ + w _ (4.12)

follows directly from Eq. (4.3) when the velocity ratios are inserted as

the direction cosines. Substitution of the streamwise derivatives given

by Eqs. (4.11) and (4.12) into the potential Eq. (4.8) is easily

accomplished by grouping the appropriate terms in the latter. This

leads to a streamwise formulation of the potential equation given by

@tt + 2q@st (c2 q2)@s 2= - s + c (V20 - @ss ) (4.13)

: a2where V2 a2/ax 2 + /aY 2 + a2/az 2 is the Cartesian Laplacian

operator. This takes on a particularly simple form for two-dimensional

steady flow, i.e.,

where @ss reduces to

(c2 - q2)@ss + C2@nn = O.

I / 2 82@

@ss - q2 _u --ax2

a2@ v 2 82@ I

(4.14)

(4.15)

and @nn represents the second directiona] derivative normal to the

streamwise direction such that the positive direction of n is

consistent with Fig. 4.]"
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l / 2 B20 B20 u2 a20_Onn - q2 v ---OX2 2uv axoY + a-_-/ " (4.16)

The use of a coordinate system aligned with the streamwise and

normal directions has obvious advantages. The potential equation is

considerably simplified when expressed in these coordinates. The

troublesome cross-derivative terms which generally complicate the

numerical solution and usually adversely effect the convergence rate are

removed. Even when streamwise and normal coordinates cannot be used

explicitly, they can be expressed locally in terms of the actual

coordinates as in Eqs. (4.15) and (4.16) for two-dimensional flow. One

marked advantage of doing this is that derivatives can be treated

differently in the streamwise and normal directions. In fact, it was

for this very reason that Jameson (Ref. 53) introduced his rotated-

differences procedure. The use of a streamwise coordinate system allows

type dependent differencing schemes, as discussed in the last chapter,

to be employed in a straightforward manner. The streamwise direction

can be type-dependent differenced and the normal direction can be

centrally differenced. The use of rotated differencing allows

derivatives to be constructed in the streamwise and normal directions

from the Cartesian coordinates. Failure to use a rotated differencing

scheme without one coordinate being nearly aligned with the flow

direction can lead to instability when supersonic regions are present.

The likelihood of instability results from either central differences

having a component in the streamwise direction or from upwind

differences which may not contain the correct domain of dependence,

leading to negative artificial viscosities. This points out a major

advantage in using helical coordinates for propeller flow. The
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undisturbed flow direction can be aligned with a helical coordinate.

This helical direction wi11 be the streamwise direction for which type-

dependent d_fferencing can be used.

4.3 Potential Equation in Noninertial System

The potentlal equation, Eq. (4.8) can be expressed in vector form

(Ref. 54) as

The potential equation can also be expressed in an xyz coordinate

system which is both translating with an arbitrary constant velocity V

away from the inertial frame, and rotating with an arbitrary constant

rotational velocity Q x $. The angular velocity vector Q (with

magnitude Q) has the direction of the axis through the origin about

which xyz are rotating, and $ is the position vector in this

system. The relationship between the two coordinate systems is shown

in Fig. 4.2. Although both V and _ are general vectors, they will

soon be restricted to a common axial direction in the following

development. The rotating system is, of course, not an inertial system.

Although such a system introduces extra terms, it offers advantages over

fixed coordinates. In particular, for a propeller rotating about an

axis aligned with its flight direction, the flow appears steady

(ignoring unsteady effects such as flutter) to an observer in a

coordinate system rotating with the propeller.

A potential equation can also be established in the noninertial

frame for a flow which is irrotational in the inertial frame. This is

initiated by defining a perturbation potential @ which separates the

contribution of the free-stream from the total potential. The
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freestream contains both uniform flow and bulk rotational flow

contributions, consequently

q' _ 9_ = q - (V + _ x i) (4.18)

represents the irrotational perturbation velocity. The gradient

operator is invariant with respect to choice of Cartesian coordinate

The components of the perturbation velocity _' are definedsystems.

as

u' : _ v' : _ w' : _9_ (4.19)
@x ' By ' az

The transformation of the potential equation has been carried out by

Isom (Ref. 5) for a coordinate system translating and rotating with

constant, but otherwise arbitrary, V and

in the noninertial system is given as

_. The potential equation

av
_tt + _ " R/(V_ • a) + 2a • V@t - _xa • V_ - _ • 7@ + 29@ • 9@t

where _ is the negative of the vector sum of the translational

velocity and the rotational velocity as seen by an observer in the

rotating frame.

(4.20)

Thus, for such an observer, _ can be simp]y written as

= -(V + _ x _). (4.21)

It should be pointed out that in the transformation from the

potential equation for an inertial reference frarne_ Eq _4.!lj ',, _,_

potential equation for a noninertial frame, Eq. (4.20), the cubic term,

on the left-hand side of Eq. (4.17), was dropped. Otherwise, Eq. (4.20)

is an exact equation. Introduction of the perturbation potential does

not, in itseif, imply any approximations.
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4.4 Potential Equation in Noninertial Curvilinear Coordinate System

Application of Eq. (4.20) to the propeller problem can be carried

out by further simplification in much the same manner as was done in

deriving the small disturbance equations for the helicopter problem.

However, since the helical coordinate systems which wil1 be used for the

propeller problem are nonorthogonal, the potential equation, Eq. (4.20)

is more tractable if expressed in invariant tensor form. For a

translational velocity V which is independent of time, it has the form

a1 8. (8-3£-) " a2___ 1 ijk(_ja k _kaj) -_--8t 2 + BY1 aj + 2a ] i8 - _ ¢ -%yj ay t By i

I ) I+ a-ta gij _9__ _£_ + ai ___) gjk
%yi %yj Byl ayj 8yk =

+ _ By iay j

In this equation ai

coo- (6- l) + a •
8y 1

ij 1 a (#Tg'J)
8yi @yj + _ Byi @y i

(4.22)

and ai represent the contravariant and covariant

components, respectively, of the general ve]ocity vector _ defined by

Eq. (4.21). The quantities gij are the contravariant components of

the metric tensor for the transformation between the curvilinear

i
coordinates y and our orthogonal Cartesian coordinates. The quantity

g is the determlnant of the corresponding covariant components gij

ijk
which do not appear expIicitly In the equation. The symbol c is

the permutation symbol which equals zero for repeating values of i,j,k,

unity for cyclic (even) permutations of 1,2,3, and negative unity

otherwise.

4.5 Potential Equation in Helical Coordinates

Equation (4.22), expressed in terms of a rotating coordinate

system, can be simplified considerably by choosing one of the
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curvilinear coordinates to be in the direction of the vector a. From

Eq. (4.21), this is seen to be the direction opposite the vector sumof

the translational velocity and rotational velocity which we now take to

be orthogonal such that V is aligned with the axis of rotation as

shown in Fig. 4.3. With this arrangement the vector _ is in the

dlrection of the free-stream velocity vector as it appears to an

observer whoseframe of reference rotates with the blade. In this

instance the magnitude of a will be designated by U such that it may

be written in matrix form as

: (4.23)

Also,

U2 = (Dr)2 + V2, (4.24)

where r is the radial distance as measured from the axis of rotation.

Equation (4.22) then simplifies to

at2 + (ay I aylat 2 By2 + _ g i "
8y 8yj

+U B gjk 8_9_- 1
By I _)yJ Byk = Byl +

ayiayJ+ I >ayJ
(4.25)

4.6 Approximate Potential Equation in Scaled Helical Coordinates

Equation (4.25) is exact in that it is equivalent to Eq. (4.20),

but expressed in a blade-fixed reference system. However, thls equation

is much too complicated to be solved efficiently. Therefore, a

systematic simplification is necessary to arrive at an approximation
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which retains the nonlinear features of the problem and which is valid

for small disturbances about the mean flow. Starting from Eq. (4.20),

such a procedure was carried out by Isom (Ref. 5) using Cartesian

coordinates for flow about the tip region of a helicopter blade.

Following the development of the approximate equation for the helicopter

problem, a similar process is applied to Eq. (4.22) for the case of a

propeller blade using helical coordinates. The use of helical

coordinates introduces the metric tensor into the approximate equation

and allows representation of flow curvature.

Derivation of the approximate equations for flow about a propeller

is based on consideration of the following parameters: the axial

free-stream Math number M _ the thickness ratio 6; the ratio of

the chord _ to the blade-tip radius

aspect ratio, c; and the advance ratio

the reduced frequency would also enter.

R, which is the inverse of the

X. For true unsteady problems

However, since we are examining

only steady solutions, the reduced frequency need not be given further

consideration. Also, for cascade solutions, a parameter representing

the blockage of the flow, say solidity, would normally enter the

problem; here the blades will be considered far enough apart so that

variations in solidity will not be important. For an advanced

turboprop, typical values of the relevant parameters are M = 0.8,

6 = .02, e = 0.3, and X = I.

Following Cole's choices of the similarity parameters, the lateral

direction y3, which lles essentially normal to the blade, is scaled

by dividing it by the value 6 I/3 This could be done also for the

radial-like or spanwise direction y2, since the physical justification

for scaling is to transform the lateral dimensions to account for the



82

weak diminut!on of disturbances in these directions in comparison to the

streamwise direction. However, Isom chose to scale the spanwise

directlon differently by introducing e as defined previously. This is

accomplished by normalizing the streamwise direction yl along with the

already scaled y3 direction by _, while normalizing y2 by R.

Since by these two methods of scaling, the y1 result in the same final

approximation, either can be used. The latter choice is made here and

the directions are scaled such that the original coordinates transform

to the dimensionless ones, as given by

1 2 =2y =_ , y :Ry , (4.26)

where the tilde denotes the dimensionless coordinates. In addition,

time and the disturbance potential are nondimensionalized as follows:

t t 6213_R_
: _ , m : ;. (4.27)

The use of the tilde is for clarification only. When the switch to the

scaled, nondimensional variables is actually performed, the tilde will

be removed.

It is now assumed that in terms of the scaled variables, the

following are two reasonable approximations: (1) all second derivatives

of the potential are of first order in magnitude; and (2) all first

derivatlves are second order in magnitude. The first assumption is

based on accumulated experience and the second is based on the

fundamental llmitation that the deviation in velocity from the free-

stream velocity be small. For the limiting case of incompressible flow,

the maximum variation from free-stream conditions occurs at the boundary

of the solid surfaces; this can be expected to extend reasonably well to

compressible flow. The perturbation velocities along a blade surface
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can be considered small for sufflclently thln blades with small slopes

and thus all perturbation velocities can be considered small. Then, in

terms of the original unscaled variables, using Eq. (4.26) and the

assumption of equal magnitude of scaled second derivatives, the

following ratios among the second derivatives,

a2___ . 82T__ .

(8yi)2 " (8y2) 2 (8y3) 2
8y lay 2 8y lay 3 " 8y28y3

and, similarly, the following ratios among the products of the first

derivatives

ay 1) 8y 2) 8y 3) 8y 1 8y 2 8y 1 8y 3 8y 2 8y 3

are each, in the given sequence, estimated to compare as

I I 62/3 1 6113 6113

_-2 R2 _2 _R _2 _R

The ratio relations above can be multiplied by _2 and written

2 . 62/3 . I/3 . /31 • c c • 6 c61

From the values given earlier for a typical advanced turboprop blade,

2 62/3 I/3c , , and c6 are each small compared to unity. Furthermore,

the values of the off-diagonal elements of the contravariant metric

tensor components gij are small compared to the diagonal elements

g(ii) for most locations, especially neaF the blade surfaces where

gradients in the solution are largest. These are the main criteria used

to reduce Eq. (4.25) to a more amenable form.

The expresslon gij 8_/8x i 8_/8x j , representing (V@) 2, occurs in

three terms of Eq. (4.25) and is approximated as

ij _ 8<_ gll i/8_'_ 2

--
(4.28)
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This is justlfied since each of the discarded terms is judged to be

small by virtue of the corresponding ratio relations and by the fact

that the off-diagonal gij are small. Of these three occurrences,

only its occurrence in the last term on the left-hand side of Eq. (4.25)

will be retained. This term may be written as

U 8 11 : 11 82(p( ,vj °BY 1 [By I
+ 8yi "

(4.29)

The variation of gll with respect to yl is small enough that the

second term on the rlght-hand side of Eq. (4.29) can be neglected. This

results in the following approximation

Ug

ar1 \ ay/ j
(4.30)

The Laplacian operator occurring in the final brackets on the

right-hand side of Eq. (4.25) remains to be simplified. This is done by

neglecting the last set of terms which contain the first derivatives of

the potential. The Laplacian factor is thus given tile approximate form

,
ayiay j + _ @yl By j By 18y j

(4.31)

Equations (4.30) and (4.31) are inserted into Eq. (4.25) and the fourth

term containing a first derivative of the potential on the left-hand

side of the equation is omitted. This reduces Eq. (4.25) to

___ u__d___÷_u_ u_" _ /_

ay lay 2 + aylay 3 + ay2ay3]J •

+ g22 82_ + g33 82m

(4.32)
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Finally, on the right-hand side, the unsteady term is dropped and only

the largest of the nonlinear terms is retained which contains the factor

gij 82 /8yiByj from the Laplacian. All other nonlinear terms are small

based on the equivalence of the ratio relations. The equation for the

perturbation potential is then

829_+ U2 82_

8t2 (8yl) 2

= -(_ - l)Ug

8ylsy2 + 8ylBy3 + 8y28y3}J

By defining

+ g33

(4.33)

M - U (4.34)
co:

2
and combining similar terms yields, after dividing by co:,

1 82_+ (M2 _ g11)

c2o:at2 (syl) 2

+2 M g ll 8_____82(pM 82_p-- + (K + 1) _-- 2

co: 8ylat o: 8yl (8yl)

+ g 8y28y3}
8y 18y3 +

This is the final form of the perturbation potential equation in

(4.35)

unscaled variables. This equation will now be transformed by the

scaling relations given in Eqs. (4.26) and (4.27). Substitution of

these scallng relations into Eq. (4.35) gives
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_2 a2m__ 2M
2 +

c at2

a2___ + (M2 _ g11)

Ec aylat

+ (_ + l)Mg
II

6213_____Rag____ = g22 1 a29-- + g33 6213
_2c ayl (ay I R2 C8y2)2 Q2

a2t

(ay3) 2

R  ,I g13
+2

ayl By2 + _2 aylay3

(4.36)

where the tilde is not shown. Multiplying this equation by _216213

and introducing a constant Mach number, characteristic of the rotational

speed of the propeller tip as defined by

QR (4.37)
MT - cm •

results in

e Ig e a2L22 2 a2__ g33 a2___+2 12 6213

13 1 aZL 23 e aZm___ (4.38)
+ g 1/3 + g 61/3a aylay 3 ay2ay 3 ) "

For low frequency or steady problems, it is admissible to delete

the second derivative with respect to time. This leaves the final form

of the governing equation in terms of the scaled variables as
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2MMTc a2_ + M2 _ gl] a2(p

6213 aylat 6213 (ayl) 2

+ (_ + l)MMTglI a(p __

ayl (a l) _-

c a2o.__ g33 _ 2(g12 c a2____ g13g22 2 1 a2___

6113 aylay3

+ 6113 ay2ay3) "

(4.39)

Equation (4.39) is the small disturbance equation which is solved

numerically by the ADI Douglas-Gunn algorithm presented in Chapter Vll.



V. BOUNDARY CONDITIONS

5.1 Wall Tangency Condition for Blade Surfaces

The small disturbance boundary condition to be applied at the blade

surfaces wi11 now be established. This necessitates returning briefly

to the unscaled variables.

In a blade-fixed coordinate system, if the equation for the surface

of a blade moving in a time dependent manner is given by

F(yl y2 y3 ,t) = O, (5.1)

then the vanishing of the fluid velocity component normal to the surface

brings

where

D F(yl y2 y3, t) aFD_ ' ' = _ + (_ + V_) • VF : 0
(5.2)

F = Fu(yl, y2 y3 t) = y3 _ hu(yl, y2, t) = 0 (5.3a)

on the upper (suction) blade surface from the leading edge (L.E.) to the

trailing edge (T.E.), and

F = Fo(yl, y2, y3, t) = y3 _ ho(yl, y2, t) = 0 (5.3b)

on the lower (pressure) blade surface. Here, h is the profile

parameter. This follows the convention used for wing surfaces. The

coordinates are aligned as shown in Fig. 5.1, where yl is nearly

along the mean chord, y3 is nearly normal to the chord, and y2

lies in the spanwise direction.

The general time-dependent boundary condition which allows the

profile parameter to include pitching, bending, and twisting is

88
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PELLER CASCADE.



90

developed next.

efforts whlch consider flutter. Proceeding with this general

development, the two spatial terms in Eq. (5.2) are

• 9F : U @__.F_F

ay 1

and

This time-dependence is included mainly for any future

(5.4)

VF: gij aF
Oy I Byj

(5.5)

The latter expression can be written out using Eq. (5.3) as

9m • VF = _gll _ @h__h__ g22 _ ah

oyl oyl @y20y2

+ g33

Oy 3

Oy I Oy2 + ay2 ay I Oy 3

Oy2 By3 "

(5.6)

The usual application of small disturbance boundary conditions requires

that an approximation be made to the derivative of the potential in the

direction normal to the mean chord. The use of Eq. (5.6) along with

Eq. (5.4), when substituted into Eq. (5.2), with rearrangement to

separate O@lay 3, gives

_-_--Ig33 - g13Ohay3 oyl - g23 @hl@yy2 = _Oh + U --@h + gll 8____Ohl + g22 @?_ ahBy I By OyI Oy2 By2

+g + - -g 2
ByI By2 Oy20y'/ ByI By\

(5.7)

Introduction of the scaling laws into the above equation provides

a basis for slmplification. The scaling of h that is consistent with

the scaling relations introduced previously is
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Substituting Eq. (5.8) along with the previous scaling relations into

Eq. (5.7) and again discarding the tilde, yields

Ig33_ g13 6 ah--_-_g23c6 a_21By I By3 =

ah U @h I162/3 _ ah+g
c _ + _R ayl By I By

+ g2262/3c2 _ @h + g1262/3 cla__Tlah _ _ aa____T)
By2 By2 \By By2 By2

_ g13 1 ag__ g23 c ag__

61/3 ayl 61/3 8y2

(5.9)

Based on the typical values of c and 6, this is closely approximated

by

I I 8h M ah g13 1 a___ g23 c a_9__lBy3 - g33 c _ + MT BY I 61/3 ayl - 61/3 By2 •
(5.10)

For blades which taper gradually toward the tip, the last term in

Eq. (5.10) can be neglected with the result

a_o 1 @h M @h g13 1
8y3 - g33 a-t + MT 8yl 61/3 8yl "

(5.11)

One of the key developments of this work is the generation of

coordinate systems possessing the characteristic that g13 = 0 at

the blade surfaces. For these coordinate systems, the unsteady boundary

condition at the blade surface, in scaled variables, is

a_p _ i ( ah M ah
/ \

ay3 g33 \c _ + MT aYI) .

(5.12)

It is interesting to note that in dimensional Cartestian coordinates

(yl = x, y2 = Y, y3 = z), this expression is the familiar

a_p ah ah
az=_ +u a-x " (5.13)

Finally, the steady scaled boundary condition is simply

_9_ I M ah
N

By3 g33 MT ayl
(5.14)
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This boundary condition is not actually applied at the airfo_l surfaces

but rather at two surfaces separated slightly such that they straddle

the mean chord surface which itself lies on, or near, the y3 = 0

surface. Thus, at the upper surface

I M ahu
_3 MT 1ay3 = ay

y3=o+

and, at the lower surface

ay3
y3=0_

I M 8ho

33 MT Ig By

(5.15a)

(5.15b)

5.2 Flow Field Boundary Conditions

Additional boundary conditions must be specified to fully define

the problem. These include the boundary conditions upstream and

downstream of the propeller, along with those for the inner and outer

radial surfaces, and those far above and below the blade. Additionally,

the Kutta condition at the trailing edge of the blade is required along

with a treatment for the trailing vortex sheet. The handling of a

cascade of blades is identical to that of an isolated blade aside from

the specification of the conditions above and below the blade. Even in

the case of cascade flow, the flow region about a single blade is

sufficient provided the application of periodic conditions reduces the

extent of the problem. As mentioned previously, shocks require no

special boundary treatment as internal discontinuities because they are

captured numerically as part of the solution process.

The upstream boundary condtion on the perturbation potential is

= O. (5.16)
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This merely states that the free-stream condition prevails sufficiently

far upstream.

In the downstream direction, the value of the perturbation

potential is unknown, but at a large enough distance downstream

a__-: 0

ay l

is used as the boundary condition.

At the hub, or inner spanwise boundary, the condition

- 0
ay2 -

is used, and the outer spanwise boundary condition is simply

= Oo

Although y2 is not strictly a radial direction, it closely

approximates it for the coordinate systems employed here.

The far field above and below the blade has two boundary condition

options. For an isolated blade, the condition

- 0
ay3 -

is assumed to apply both far above and far below the blade. This

requires a coordinate system whereby the y3 direction is normal to

the free-stream direction yl at these boundaries. For multiple

blades, cascade-type periodic boundary conditions are applied such that

@(yl, y2, t) y3 = upper = _(yl, y2, t)

surface

y3 = lower

surface

(5.17)

(5.18)

(5.19)

is satisfied over the boundary surfaces which are chosen to lie at the

midchannel. This, in return for straightforward app]ication, requires

a coordinate system which provides nodal coordinates having azimuthal

(5.21)

(5.20)
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periodiclty. Such periodic coordinate systems are discussed in a

subsequent chapter. Only solutions using the cascade boundary

conditions are presented in this work.

It remains to discuss the boundary conditions in the vortex wake.

Rollup of a wake is ignored and, the resulting vortex sheet is

approximated as lying between the downstreamextensions of the helical

surfaces upon which the b|ade boundary conditions are imposed. The

strength of the vortex sheet is assumedto be preserved as it convects

downstream. In addition, the direction of the vortex vector is assumed

to be "parallel" to the free-stream direction. Since the vortex sheet

is a free surface, it cannot support a pressure difference. Along with

these statements and the fact that the normal velocity across the sheet

is zero, it follows that the tangential velocity jump occurring across

the sheet is entirely in the spanwise direction. The boundary condition

at the trailing edge can be written in terms of the scaled coordinates

as

= r(y 2, t)[m]T.E.

where F is the circulation around the propeller blade, and

[_] : (_)y3=O + - (_)y3=O_

is the jump in the perturbation potential across the wake.

(5.22)

(5.23)



Vl. HELICAL COORDINATES

This chapter contains the development of special periodic helical

coordinates suitable for propeller problems which include cascade

effects. The coordinate transformation between this system and an

orthogonal Cartesian system is specified so as to provide simple

periodic boundaries, and to also provide orthogonal properties at the

blades. However, before describing these new helical coordinates, a

brief discussion will be given for a simpler helical coordinate system

satisfactory for flow about an isolated blade, but not for cascade flow.

This discussion points out similarities and distinctions between the two

coordinate systems and will help to illustrate the features of the new

coordinates.

6.] Helical Coordinates for an Isolated Blade

Simple helical coordinates are useful in calculating the flow about

isolated propeller blades. The transformation of these coordinates

along with a listing of their metric tensors is given in Appendix B.

These simple helical coordinates consist of two sets of helices,

providing two coordinate directions, yl and y3 with the remaining

2
coordinate direction y being essentially radial. A set of these

coordinates is shown in Fig. 6.]. The helical curves are confined to

spiral about a common axis on circular cylindrical surfaces; members of

each set spiral clockwise about the axis when viewed along the axis in

the direction corresponding to an increasing value of yl. The axial

95
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FIGURE 6.1. - HELICAL COORDINATES USED FOR ISOLATED BLADE

SHOWN WITH CARTESIAN COORDINATES.
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components of yl and y3 are oppositely directed. The two sets

of helices are mutually orthogonal.

The main advantage of these coordinates is that the undisturbed

flow direction can be aligned with one set of helices. These streamwise

helices are constructed such that the helices of greater radii have

smaller advance ratios; i.e., the smaller the radius the steeper the

spiral, exactly characterizing the mean propeller flow. The set of

helices normal to the streamwise helices behaves in the reverse way.

Another distinct advantage is the orthogonaIity between the two

sets of helices. This is an important feature because the small

disturbance boundary condition applied at the blade surfaces is greatly

simplified. Orthogonality is a desirable property because it generally

results in more accurate numerical calculations. Thus, it is

advantageous to have these coordinates orthogonal throughout the region

of interest.

The coordinate direction y2, which serves to measure the radial

value is, in general, not a straight line. In fact, this coordinate

direction has only one straight coordinate line: its coordinate axis,

which was chosen to align with the leading edge of the blade. This is

called the pitch change axis. With increasing distance from the pitch

change axis, this coordinate direction departs to an increasing extent

from a purely radial direction. Hence, the orthogonality of the

coordinate system is reduced as the distance from the blade's leading

edge is increased. Only at the leading edge is the coordinate system

truly orthogonal. A notable charcteristic of the coordinate system is

that, for high advance ratios, it tends toward an orthogonal Cartesian

coordinate system. This can easily be seen by inspecting the metric
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tensor for this transformation which is provided in Appendix B. Since

for all space gll = l and g33 = l, the values of yl and y3

for any given point correspond to the respective arc lengths along these
2

curves from the origin to that point. This is not the case for the y

curves. As mentioned above, the y2 coordinate is a measureof the

radial value from the axis to a given point; the arc length along y2

exceeds this value. However, as the advance ratio increases, g22

also tends to unity.

6.2 Periodic Helical Coordinate System for Cascades

The periodic helical coordinates are closely related to the

helical coordinates described above. The streamwise helices yl are

unaltered so as to retain their alignment with the undisturbed flow.

However, to provide periodicity, the geometrical scaling of the y3

direction is modified so that this coordinate is no longer a direct

measureof its arc length. Rather, the y3 direction is specified

to scale similar to the angular coordinate of the familiar circular

cylindrical coordinate system; i.e., a change in the value of the y3

coordinate brings a change in arc length which is proportional to the

radius. However, this change in scaling the y3 coordinate is not

sufficient to give circumferential periodicity. The y3 coordinate

curves must be changed so that they are no longer helices.

To provide circumferential periodicty, the y3 coordinate must

be constructed such that, in a periodic fashion, it repeats its axial

locations. The simplest choice is to make y3 the circumferential

direction, forcing it to be independent of the axial value. The

drawback in doing this is that then it would no longer be normal to the

streamwise direction. OrthogonaIity in these two directions is an
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important quality, especially near the surfaces of the blades. To

provide orthogonality at the mean blade locations, the y3 direction

must assume the direction of the y3 coordinate of the helical system

used for an isolated blade, at least near the blades. Away from the

blades, the y3 coordinate should reverse its axial direction so as

to bend back and regain its original axial station. This must be

repeated in a periodic fashion to conform to the locations of the

1
blades. Thus, only coordinate curves in the streamwise direction y

are helices for this system. The y2 direction remains a coordinate

which measures the radial value and since it is formed by the

intersection of surfaces of constant yl and y3, it will generally

not be a straight line.

A set of helical coordinates which has these properties is given by

the following transformation to the Cartesian coordinates

1 y2x : sin O

x 2 = y2 cos

x 3 V 1 y3= - U y + A(y2)B( )

where

and which is related to the helical coordinates by

_yl
0=_ +R

i
X

(6.1)

(6.2)

(6.3)

0 is the circumferential angle measured as shown in Fig. 6.2,

(6.4)

The total helical velocity U is, of course, a function of the radius.

It is convenient to make the following assignments which are

consistent with the notation in Appendix A: xI = x, x2 = y, x3 = z for

the Cartesian coordinates and yl y2 y3= y, = r, = _ for the helical

coordinates. Using these replacements the next section will discuss the

proper choices for A(r) and B(_).
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6.3 Tailoring the Periodic Helical Coordinates

The functions A(r) and B(_) are used to tailor the helical

coordinate system to two sets of the streamwise helical sheets. The two

sets of sheets of constant _ are illustrated in Fig. 6.3. They are

evenly spaced in the circumferential direction. The first set of these

sheets will contain the mean position of uncambered, symmetric, twisted

blades. These correspond to the advance helicoids described earlier in

Chapter II. The second set of helical surfaces is similar and is

chosen such that each sheet lies midway between two neighbors of the

first set, thus forming an alternating arrangement of periodically

spaced helicoidal surfaces. The boundary conditions for the airfoil

surfaces are applied very near members of the first set, whereas, the

periodic conditions are enforced on the second. It should be mentioned

that for asymmetrical blades or blades with camber, the mean blade

position will not quite coincide with a helical sheet. The mean blade

positions are assumed to lie near the first set of helical sheets so

that small disturbance boundary conditions can be accurately applied.

As mentioned, the helical sheets are surfaces of constant _. It

is desirable for satisfactory application of blade surface boundary

conditions that the _-coordinate be orthogonal to the mean blade

surface. In addition, simple handling of periodicity requires that

there be no net change in axial distance when traversing a

_-coordinate line from one periodic boundary to another. These two

objectives can be met by properly choosing the functions A(r) and

B(_).

Recall that the functions A(r) and B(_) enter the transforma-

tion through the relationship given in Eq. (6.3), which is now written as
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103

V
z = -y 0 + A(r)B(_). (6.5)

This specifies the axial coordinate in terms of the helical variables.

It will be shown that by choosing suitable forms for A(r) and B({),

two of the metric tensor components g13 and g23 vanish concurrently

at special values of {. The y and _ curves will be orthogonal

: 0 and, likewise, the r and _ curves will be orthogonalwhere g]3

where g23 : O. When both are zero, the _ curves will be normal to

the surfaces of constant _. The first objective is to arrange this

to occur for those helical sheets containing the mean positions of the

propeller blades. To assure that these surfaces are periodically spaced

in the circumferential direction, B(_) is expressed as the product of

two functions of _ in the form

B({) = E(_) _ sin (6.6)

where E is a damping function and _m is a positive constant

establishlng the period and is exactly half the distance between the

blades.

Meeting the conditions of orthogonality requires the inspection of

the functional dependence of g13 and g23" This will reveal what the

final forms of A(r) and B(_) must be. First, the metric tensor

component g13 will be discussed, and then g23

constraints will be imposed on the axial velocity

where additional

V(r).

From Appendix A Eq. (A28), we have

_r r V
A(F)BI(_) (6.7)g13 - U R U

where the prime indicates differentiation with respect to the indicated

argument. By using Eq. (6.6), this becomes
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g13 - U R - 0 A(r) E'(_) _-- stn _ + E(_) cos _ . (6.8)

As mentioned, E(_) is a damping function and is needed to assure

a valid coordinate transformation. Useful selections of E(_) include

IEI , and E = exp ao 2 as well as polynomial forms.
E = exp a° _m _m

The significance of the bar above _ in the exponential arguments

will be discussed later. For simplicity only the first case, namely

I-_-L) ' will be presented since the °ther Cases f°ll°wE(_) = exp a° _m

similarly.

The derivative E'(_) is

a ( )
+ _ (6.9)

E'(_) = o exp -a0 _m

where the minus (plus) sign relates to positive (negative) values of {.

By substituting the expressions for E(_) and E'(_) into

Eq. (6.8), we obtain

_r r V A(r)exp ao _ os _ + -- sin
gl3 - U R U _m - _

with the same meaning as above attached to the sign notation appearing

before the last term.

The periodic significance of _m is now determined by introducing

a positive integer NB and allowing the value of _/_m to range from

-I/2N B to I/2NB. Here, NB signifies the number of blades in the

cascade and may be either even or odd. Since the value _m is half

the dlstance between neighbo1"ing blades, the blades will be located at

intervals of twice _m" The total distance from -I/2N B to I/2NB

equals one traverse around the cascade. By arbitrarily specifying

(6.10)
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one blade to be positioned at _ = O, the blade locations take on the

following values of _l_m"

{B O, ±2, ±4, ..., ±(N B - I);

_m = O, ±2, ±4, ..., ±(N B - 2), NB;

for NB odd

for NB even
(6.11)

where the subscript B denotes a blade location. Also, at this point,

the meaning of the over-bar above { is made clear by defining

to be the value of _ as measured from the nearest blade. Thus the

extremes of _ will be ±_m" With these definitions Eq. (6.10)

for the metric tensor component can be written

_ fir r V A(r)exp _-- _-
g13 U R U E_ m os _r ± -- sin

(6.12)

for values at the blade stations.

definition of _ and since

value of the component g13

However, since

cos _-- = 1 and

_B = O from the

sin _mm _ = O, the

at the NB blade stations reduces to

gl3

_:_B

fr r V
A(r). (6.13)

- U R U

Therefore, g13 can be forced to equal zero at these periodic positions

by simply prescribing that

fiR r 2
(6.14)

The expression for the axial coordinate in Eq. (6.5) can now be

expl_cltly written as

v (z : -y 0 + _ V R2 exp -a° 5m
(6.15)

As mentioned above, the exponential factor serves as a damping function

to guarantee that the coordinate transformation is well behaved; i.e.,
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the coordinates should not fold nor should the Oacobian of the

transformation vanish anywhere within the region of interest. In this

regard, the quantity ao is a nonnegative constant which increases

in magnitude as the ratio V/QR_ _ decreases. For a given X, the

larger the damping the more the (-coordinate is forced to assume a

purely circumferential direction.

The expression for the metric tensor component g23 can be

written using Eq. (A30) in Appendix A as

g23 = - U R U + U'(r) U Y + (F)B(_ A(r)B'(_).

From Eq. (6.6) and the values of _B' the term A'(r)B({) = 0

NB blade locations. Furthermore, since gl3 is zero at these

positions, inspection of Eq. (6.7) reveals that AB' = (QR/V)(r/R) 2 at

g23the blades also. Then, for this case, the metric tensor component

reduces to

g23
_:{B

C2r r U'y + U' - y _-
=-U R U

(6.16)

at the

Interest.

= - V- U

By inspection, requiring V to be a constant is sufficient to render

g23 = O. In this way, both g23 and g13 are made equal to zero

at the blade stations defined in Eq. (6.11).

Thus, the _-coordinate lines will be orthogonal to the helical

sheets containing the mean camber locations of the blades provided that

A(I) and B(() aFe defined as above and that the axial velocity V is

a constant. The last constraint is a realistic restriction because a

constant value of V is the most reasonable case and the one of most

(6.17)
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The second objective is the requirement that the axial distance be

the samefor corresponding points at each periodic boundary. This is

easily verified as being satisfied by inspecting the transformation of

z on the helical sheets lying midway between successive blades. From

Eq. (6.15), it is seen that

zpB = z _:_PB -Y 0 (6.18)

when __ _ _PB_ ±I, ±3.... , ±(NB - 2), NB; for NB odd
_m _m ±I, ±3, ..., ±(NB - 3), ±(NB - l) for NB even

where the subscript PB denotes "periodic boundary." This relation

shows that the net axial distance is not changed upon a complete traverse

via a _-coordinate line from one periodic sheet to any other. In

fact, moving a value of twice _m along any _-coordinate restores the

original axial location. That this is true can be seen by inspecting

Eq. (6.15). The consequence of this is that any set of sheets separated

by a value equal to the blade spacing 2_m could be used as periodic

boundary sheets.

6.4 Final Form of the Periodic Helical Coordinates

For convenience, the transfoFmation of the helical coordinates

1 y2 y3 x 1 2¥ = y , r = _ = to the Cartesian coordinates x = , y = x ,

z = x 3 is given in terms of the nonsuperscripted variables"

¥ + (6.20)

V _m_Rr2 ( - ) (_mm)
]-_ sin _ . (6.21)

z = -y 0 + _ V R2 exp a° _m

This is the set of coordinates which is used in the solution of the

small disturbance equation presented in Chapter IV. Various other cases
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of these coordinates could have been specified. For example, if either

A(r) or E(() of equation (6.3) is chosen equal to zero, then the

{-curves becomecircles about the z-axis. As another special case,

if B(_) = _ is chosen, then the _-curves are helices. On each

helix the coordinate value varies as the arc length divided by the

value of the radius at which that given helix lies. This distinguishes

them from the original helical coordinates given in Appendix B. The

metric tensors are given in the latter part of Appendix A for these

special cases.



Vll. NUMERICALAPPROACH

This chapter presents a general description of the numerical

appFoach used to solve the small disturbance equation derived in

Chapter IV. For the sake of convenience, the small disturbance equation

will be rewritten letting yl = Y, y2 = r, and y3 = {, as

discussed in Chapter Vl. With this notation Eq. (4.39) can be written

F

ayat L _ay] --J ar2 + a(2

ayar + aya_ + ara(
(7.1)

where

2MMTc

A1 - 62/3
(7.2a)

1 11
A2 = - _ (_ + I)MMTg (7.2b)

gll _ M2

A3 = 62/3
(7.2c)

2
22

A4 - 6_13 g

2

- 62/3
(7.2d)

A5 = g33 (7.2e)

2c g12
A6 - 62/3

(7.2f)

2 g13
A7 - 6713

(7.2g)

(7.2h)

I09
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In transferring the two terms on the left-hand side of Eq. (4.39) to the

right-hand side in Eq. (7.1), they have been lumped together with the

II
understanding that the variation of g with respect to y is sma11.

Recall that M is a function of r only and, therefore, the only

11
dependence of A2 or A3 on y is through g

It is convenient to define the two bracketed terms in Eq. (7.1)

above by F so that:

F (7.3)
= 2 ay By •Y

Equation (7.1) is then written as

8yOt = y Or2 + a_2 + 8yOr + 8y8 + ara 

Except for the presence of the last two terms, this equation has the

same form as the equation solved in Isom (Ref. 5) where an ADI method

based on the Douglas-Gunn algorithm was used to solve the finite

difference form of the equation for f]ow about helicopter rotors. The

additional cross-derivative terms will be handled by generalizing the

Douglas-Gunn algorithm. With modest changes this a11ows the numerical

code developed for the helicopter problem to be used for the current

work.

It should be pointed out that Eq. (7.4) remains expressed in terms

of unstretched physical variab]es. No mapping of the coordinate system

has been carried out so as to produce a nonuniform grid. For

simplicity, the numerical algorithm will be presented for the case where

there is no coordinate stretching. Following this, the method of

introduclng coordinate stretching will be explained.
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7.1 ADI Douglas-GunnAlgorithm

For three dimensions, the ADI technique involves splitting the

given equation into three separate finite difference equations which can

be solved successively to complete one time-step increment. A current

estimate of _, say, n is advanced to n+l through two

intermediate values, which will be denoted by _ and _ , to complete

a single stage of iteration.

To begin an iteration at time step n, n is advanced to

by solving the first equation with only the y-direction being

differenced implicitly; this is called the y-sweep. Next, in the

r-sweep, _ is advanced to _ by solving the second equation with

only the r-direction being implicit. Finally, in the {-sweep, _ is

n+l
advanced to m by solving the third equation with the _-direction

being the only implicit direction.

The three equations for the respective sweeps are given for a

uniform grid as"

y-sweep"

n n n
_ n) = DyFI + A46rr_ + A56_ + A66yr_

r-sweep:

+ A86r{ @ (7.5a)+ A76y_n n

A1 ** A4 **

&y(9 - 9n) = DyF I + _- 6rr(9 + 9n) + A56_@n

n n

+ _on) + A76y_ _ + A86rE_@ (7.5b)



{-sweep:

AI . , n+l A4 ** A5 ( n+l
OY_ _ n) = DyFI + 2- 6rr(@ + n) + 2- 6{_ + n)

A6 ** n A7 _ , n+l A8 ( n+l
+ 2- 6yr( _ + • ) + 2-- _Y_t_ + n) + 2-- 6r_ + n).

(7.5c)

values of J and

the y, r, and

uniform step-sizes

correspond to the flux in the y-direction, and DyF I gives the finite

difference approximation to aF/ay at the Ith-node for each set of

K. The nodal values I, J, and K are associated with

directions, respectively. The three directions have

Ay, At, and A_, which may be distinct.

An example of how the difference operators in Eq. (7.5) are defined

in terms of difference approximations is given as follows

6rrn_ l(n n n ) (76)(Ar)2 _I,J+I,K - 2_I,J,K + _I,J-I,K "

An analogous expression may be readily written for 6_{. In the case of

the mixed second-order operators, the following is used.

n 1 (n n n n ) (7 7)6yr@ - AyAr mI,J+I,K - @I,J,K - ml-l,J+1,K + @I-I,J,K "

Corresponding expressions hold for 6y_ and 6r_.

The nonlinear term contained in DyF I is linearized by averaging

at the n and * time levels by defining

(6n)(6" ) l (n * )Fl+I/2 : A2 y_l,J,K y_l,J,K + 2 A36y I,J,K + _I,J,K
(7.8)

to be the flux at the midpoint of the Ith-cell on any node line given

by J and K. The Murman-Cole type-dependent differencing scheme is

where D is a special difference operator to be explained below and
Y

6rr, 6_{, ..., 6r_ are standard difference operators in the indicated

directions. Here, F represents the bracketed terms of Eq. (7.1) which
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introduced to provide stable differencing as explained in Chapter III by

defining

1[DyFI -Ay el(Fl+I/2 - FI_I/2) + (I -

where

el_1)(Fl_I/2 - FI_3/2) ]. (7.9)

1, Vc > 0
eI

O, Vc < 0

(7.10)

and

Vc = A2_ Y + A3. (7.11)

This switches the difference equations at each grid point according to

whether the flow field at that point is subsonic, sonic, supersonic, or

a shock.

A more convenient set of equations for numerical computations is

obtained from the set given in Eq. (7.5) by subtracting Eq. (7.5a) from

Eq. (7.5b) and Eq. (7.5b) from Eq. (7.5c), producing, with some

rearrangement, the following set"

y-sweep"

A
1 * n n n n

A--t6y(_ - _ ) - DyFl = A46rr_ + A56_ + A66yr_

n n

+ A76y_ + A86r_ @ ; (7.12a)

r-sweep"

IAI A4 A6 r) ** * I A4 A6 1 *6 - _-+ 6 6y 2- 6r r _ 2- 6y r (_ _ n)y rr - 2- (m - m ) =

(7.12b)

C-sweep:

A A5 A7_S ....y 2 s_ 2

(? A7 A,)..: 6_ + _- 6yC + _- 6rE_ (m
_ n). (7.12c)
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The equations in Eq. (7.12) have been arranged into the so-called

delta form where the unknowns on the left-hand sides are expressed as

differences in the potential. This form has superior numerical

properties compared with those in Eq. (7.5). The solution to the above

set of equations involves no more than solving tridiagonal matrices,

except in the case of a shock point where a quadridiagonal matrix occurs

in the y-sweep. The potential at time level n+l can be found from

the potential at level n by adding the solutions for the delta

n
differences from all sweeps to _ as

n÷l n * n ** * n+l **
= _ + (_ _ _ ) + (_ _ _ ) . (_ - _ ). (7.13)

The sequencing of the solution along lines of grid points for each

of the three sweeps is illustrated in Fig. 7.1. The y-sweep is marched

from upstream to downstream along rows of grid points where each row is

characterized by constant values of r and {. The iteration in this

sweep proceeds along rows in a plane of constant _ by advancing

sequentially to the row with the next higher value of r. When all rows

of the current _-plane are completed, the process is repeated for the

plane with the next higher value of _. When every plane has been

swept through, the solution has advanced to _ Similarly, the

iteration proceeds in the r-sweep along rows of constant y and { by

sequencing the rows through successive planes of constant {. This

takes the solution to _ Since the value of _ varies in the

_-sweep, this last sweep proceeds along planes of constant r. When the
n+l

last plane has been completed, the solution has advanced to _ This

completes one full iteration.

As is common in ADI methods, the time step is varied from iteration

to iteration over the course of the calculation from some maximum value
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E_-SWEEP

,,_t F,,t_,L\I_-'

I + 1_ J

]-1J J+l

FIGURE 7.1. - THE THREE SWEEPSOF A COMPLETEAD] ITERATION.
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6tma x to some minimum value 6tmi n. This is done to improve the

convergent rate of the calculation. The geometric sequence

(6tmaxl(i-l)/(N-l) i = I, 2, 3, ...N (7.14)
_t i = _tmi n \_tmi n

is used for N iterations (N = 8) and then repeated until the total

number of iterations has been reached. The total number of iterations

is determined by a preset value for the maximum number of iterations,

or by either satisfying a convergence criterion or exceeding an error

bound. The range in the time step for the sequence of iterations

addresses both high- and low-frequency components of the error. In

general, the range of 6tmi n and 6tma x must be determined by

trial and error and is strongly influenced by the size of the

computational mesh.

7.2 Grid Stretching

Thus far, the physical mesh has been considered to be a uniform

grid. However, it is preferable to have the grid points clustered in

regions of high gradients and sparsely distributed in regions of low

gradients. Grid stretching is a means of accomplishing this. It is

used here to distribute the physical mesh points such that they are more

heavily clustered near the airfoil than away from it with the greatest

concentrations near the leading and trailing edges. The grid is

smoothly stretched from the airfoil surfaces to a coarse grid at the

outer boundaries of the flow field. The stretching is performed in all

three coordinate directions. It is defined in a general sense as a

mapping of the physical space ¥r_ to a uniform computational space

yr_ by

y = y(y,r), r = r(r), _ = _(_). (7.15)
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It should be noted that the physical coordinates r and

stretched by their respective computational coordinates.

a function of both y and r. The added dependenceof

necessary to accommodateswept wings.

are

However, y

y on r is

The coordinate stretching is introduced through the conventional

chain rule formulas which are given in Appendix C. By replacing the

various partial derivatives in Eq. (7.1) with those obtained by the

chain rule, this equation is generalized to stretched grids. The use

of coordinate stretching complicates, but does not change, the basic

form of the ADI algorithm.

is



Vlll. DISCUSSION AND RESULTS

This discussion focuses on the results obtained for flow over a

single blade of an eight bladed cascade. As explained in the introduc-

tion, the blades of this cascade are simple bicircular arc profiles with

a maximum blade thickness of 5 percent. Furthermore, the planform of

the blades is rectangular with the required spanwise twist made about

the leading edge. This produces a blade of constant chord length. The

aspect ratio of the blades is defined as the ratio of the blade-tip

radius, as measured from the axis, divided by the chord length. All the

results here are for blades with an aspect ratio of 4:1. The hub of the

propeller system is placed at a radius of 0.375 R, where R is the tip

radius; this gives an effective aspect ratio of 2.5 for a blade length

measured from the hub, rather than from the axis.

There are a number of reasons for using the blade geometry

described above. The main reason is to provide a simple propeller

geometry. By using a simple geometry, the flow will be uncomplicated

by the effects which would otherwise arise by using a complex blade

shape. The propeller geometry is simple for any specified advance

ratio. Another reason is that the bicircular arc profile is widely used

as a model profile in flow simulation studies. The front-to-back and

top-to-bottom symmetry of the blade produces symmetrical flow for the

case of a very high advance ratio and a zero angle of attack. For the

case of a nonzero angle of attack, lift can be introduced simply by

rotating the blade about the pitch change axis. Thus, a host of

118
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propeller geometries can easily be generated by this method of

specifying the blade construction. This, in turn, meansthat many

different flow cases can be specified simply by prescribing the advance

ratio, the angle of attack, and the Machnumberof the approaching flow.

Furthermore, any investigator who wishes to repeat the calculations can

unambiguously reconstruct the propeller geometry. Becauseof these

features, such a propeller system serves as a good prototype for flow

Investigation.

Four separate test cases are solved numerically in this

investigation. These test cases are indicated in Table 8-I by their

respective values of the advance ratio X, the helical Machnumberof

the approaching flow MR, and the angle of attack _. The first case

to be studied is the case of very high advance ratio _ : I00 with a

subsonic free-stream Machnumber MR = 0.8 and a zero angle of attack

= 0.0 °. Because this flow is essentially an axial flow, it represents

a limiting case for zero propeller rotation. The second case studied is

for an advance ratio X : I, but with the samefree-stream Machnumber

MR = 0.8 and the sameangle of attack _ = 0.0 ° as used in the first

case. The value X : I is typical for a propeller. The third case

studied is for an advance ratio X = I and an angle of attack

: 0.0 °, but for a transonic free-stream Machnumber MR : I.I. The

values of % and MR for the third case are typical of an advanced

turboprop. The fourth case is for an advance ratio _ = 1 and a free-

stream Machnumber MR = 1.1, as in the third case, but now a nonzero

angle of attack _ = 2.0° is specified. Thus, the four cases present

two values for each of the three varied parameters. The third case will

include a separate study on the effect of grid refinement on the
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solution. In addition, for the first three cases, the results obtained

from the helical small disturbance (HSD) code are compared with results

obtained from an Euler code (Ref. 6) These results are presented in the

form of constant Mach number contours on the blade surfaces and selected

cross-channel and blade-to-blade surfaces. All so]ution computations

were made using a Cray X-MP/24. The number of numerical iterations used

in computing the solutions for all test cases was 5000 for both codes.

The computational time used by the HSD solution code was approximately

60 percent of the computation time used by the Euler solution code. The

Euler solution code required approximately three times the amount of

computer memory of that used by the HSD solution code. Before

discussing the results, the grids used in the computations for the HSD

solution code and the Euler solution code will be detailed.

Mesh lines for the HSD solution computations are shown (for the

case X = I) in Fig. 8.1 where, for clarity, only every third line is

included from the leading edge to the trailing edge of the blade. A

uniform grid extended over the blade surface and a stretched grid

extended over the following regions: from the leading edge to the

upstream boundary, from the blade tip to the outer radial boundary, and

from the blade surface to the periodic boundary. The number of grid

intervals for each computational direction is indicated in Table 8-2.

The grid contained 30 intervals along the blade in the streamwise

direction and an additional 11 grid intervals both upstream and

downstream of the blade, for a total of 52 streamwise intervals. In the

radial dlrection, 20 grid intervals were used, with half of these being

on the blade. In the circumferential direction, 20 grid intervals were

used from the lower to the upper periodic boundary. The total grid,
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/
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/

/

(A) VIEW NORMAL TO AXIS SHOWING PROJECTED

VIEW OF HELICAL SHEET CONTAINING BLADE.

(B) CROSS-CHANNEL VIEW AT LEADING EI)6E. (C) BLADE-TO-BLADE VIEW

ACROSS TWO CHANNELS:

NOT ALL GRID POINTS ARE

SHOWNALONG BLADE SURFACE.

FIGURE 8.1. - HELICAL COORDINATESUSED IN SMALL DISTURBANCECOMPUTATION.
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therefore was 52 by 20 by 20 intervals. The upstream and downstream

boundaries were-located 4 chord lengths from the leading and trailing

edges of the blade, respect%vely. The outer radial boundary was placed

one blade diameter from the axis.

This grid was used as the standard grid in computing most HSD

solutions for the test cases. As discussed earlier for case 3, a series

of grids in addition to this standard grid was used to investigate the

effect of grid refinement. This additional series of grids is described

and the effect of grid density on the solution is discussed following

the discussion of the case 3 results for the standard grid.

For the Euler equation computations, the same unstretched grid

extended over the blade surface. Otherwise, the grid was stretched as

above, but wlth a different stretching function and no stretching in the

circumferential direction. A representative grid, coarser than what was

actually used for the Euler calculations, is shown in Fig. 8.2 for the

case of _ = I. The number of grid intervals for each direction is

given in Table 8-2. The position of the blade is indicated by the

narrow opening (visible in Fig. 8.2(b)) of the grid lines near the hub.

The grid of Fig. 8.2(c) illustrates how the streamwise grid transitions

from an axial direction upstream of the blade to a helical direction

near the blade and back to an axial direction downstream. Since the

blade-to-blade direction is purely circumferential, this results in a

high degree of coordinate shearing at axial locations near the blade.

In addition, the chordwise distribution of grid points is not symmetric

front to back along the blade surface, nor is it symmetric from the

suction to the pressure side; this asymmetry increases with blade

thickness and stagger. The upstream and downstream boundaries were
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(A) VIEW NORMAL TO AXIS.

i ]//,/I/i/,

(B) VIEW ALONG AXIS SHOWING THE MIDCHORD

STATION,

lilll,,+

lIIilillHlll ii

l

(C) VIEW OF BLADE-TO-BLADE SURFACE

SHOWING THREE BLADES. GRID SH(Y_N

IS COARSER IN AXIAL DIRECTION THAN

THAT USED.

FIGURE 8.2. - COORDINATES USED IN EULER COMPUTATION.
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placed at two chord lengths from the leading and trailing edges of the

blade, respectively. These boundaries were positioned differently from

the corresponding HSD boundaries because of the difference between the

two meshes In the streamwise direction. The outer radial boundary was

located as in the HSD mesh, at one blade diameter from the axis.

The computational results for the four propeller cases outlined

above will now be discussed. Although the grids used in computing the

solutions for these cases are coarse, based on two-dimensional

standards, they are realistic for three-dimensional computations. The

grid densities used in these calculations are sufficient to provide good

overall prediction of the physics of the flow, but with some lack of

detail, such as smearing of a shock. It is hoped that the following

cases can serve as test cases for other researchers.

Case l) _ = lO0, MR = 0.8, = = 0°

This case was chosen to examine the effect that blade cascading has

on the solution. For the value of X = lO0, the flow is essentially

axial. Since the blade is symmetric from front to back and from top to

bottom and _ = O, the solution should reflect this symmetry if no

losses occur in the flow field. For the value of MR = 0.8 and the

thin 5 percent thick blade, no shocks were detected in the flow field.

The expected symmetry is noticeable in the solutions of both the HSD

and the Euler codes. Figure 8.3 shows HSD Mach contours on the blade

surface with the minimum contour being 0.75 and the maximum 0.9; the

results are identical for the pressure surface and the suction

surface. The results reveal the expected drop-off in Mach number

with increasing radius. Similar results are shown in Fig. 8.4 where

identical contour values are plotted for the Euler code. The contour
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TIP

I - 0.750

2 - 0.775

5 - 0.800

4 - 0.825

5 - 0.850

6 - 0.875

7 - 0.900

TIP

HUB HUB
L.E. T.E. L.E. T.E.

(A) PRESSURE SURFACE. (B) SUCTION SURFACE.

FIGURE 8.3. - MACH CONTOURS OF SMALL DISTURBANCE COMPUTATION

ON BLADE SURFACES: ADVANCE RATIO = 100, MR = 0.8, _ = 0°.
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TIP

I - 0.750

2 - 0.775

3 - O.800

4 - 0.825

5 - 0.850

6 - 0.875

7 - 0.900

5

6

/

TIP

HUB HUB
L.E. T.E. L.E. T.E.

(A) PRESSURE SURFACE. (B) SUCTION SURFACE.

FIGURE 8.4. - MACH CONTOURS OF EULER COMPUTATION ON BLADE

SURFACES: ADVANCE RATIO = 100, MR = 0.8, a = 0°.
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shapes obtained from the two codes are very similar, with the only

essential difference being that the Mach number produced at a given

blade locatlon Is hlgher for the HSD code.

Symmetry |s again found for Mach contours in the cross-section

planes given in Figs. 8.5 and 8.6 for the HSD and Euler codes,

respectlvely. Again, the shapes obtained by the two codes are s_milar,

with the HSD results showing more flow acceleration through the passage.

The similarity in shapes indicates that qualitatively the solutions are

being calculated correctly within the interior region of the flow, as

well as at the blade surfaces.

The solutlons on the blade-to-blade surfaces are given in Figs. 8.7

and 8.8 for the HSD and Euler codes respectively. In each case Mach

contours are shown for three different span stations along the blade.

The minlmum contour value is 0.8. The values of the maximum contours

are as follows: 1.0 for Fig. 8.7(a); 0.92 for Fig. 8.7(b); 0.86 for

Fig. 8.7(c); 0.88 for Fig. 8.8(a); and 0.86 for Figs. 8.8(b) and 8.8(c).

The results are symmetric and support the result that the HSD code

predicts flows that agree with the Euler code except in magnitude, at

least for subsonic and axial flow.

Case 2) X = I, MR = 0.8, _ = 0 °

This case is presented to isolate the effect of blade rotation.

The free-stream axial Mach number is only 0.5657, although MR = 0.8.

The effect of operating at a low advance ratio is seen in F_gs. 8.9

and 8.10, which give Mach contours on the blade surface, for the HSD and

Euler computations, respectively. These contours are given for constant

Mach numbers that range from 0.6 to 0.8 in each case. Other than the

expected result that the flow Mach number would increase toward the
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1 - O.810

2 - O.826

3 - O.843

4 - O. 86O

5 - O. 876

6 - O.893

7-0.910

HUB TIP

FIGURE 8.5. - MACH CONTOURSOF SMALL DISTURBANCECORPUTATIONIN

CROSSPLANE AT RIDCHORDAXIAL LOCATION: ADVANCERATIO = 100,

NR = 0.8, a = 0°.
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1 - 0.810

2 - 0.826

3 - 0.843

4 - O.860

5 - 0.876

6 - 0.893

7 - 0.910

HUB TIP

FIGURE 8.6. - MACH CONTOURS OF EULER COMPUTATION IN CROSS PLANE

AT MIDCHORD AXIAL LOCATION: ADVANCE RATIO = 100, MR = 0.8,
Q = 00.
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FIGURE 8.7. - RACHCONTOURSOF SMALL DISTURBANCECOMPUTATIONON BLADE-TO-BLADE SURFACESAT VARIOUS SPAN LOCATIONS:

VANCE RATIO = 100, fiR = 0.8, 0 = 0°.
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FIGURE 8.8. - MACHCONTOURSOF EULER COMPUTATIONON BLADE-TO-BLADESURFACESAT VARIOUS SPAN LOCATIONS: ADVANCE

RATIO : 100, MR : 0.8, o : 00.
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FIGURE 8.9. - MACH CONTOURS OF SMALL DISTURBANCE COMPUTATION ON

BLADE SURFACES: ADVANCE RATIO = I, MR = 0.8, _ = 0°.
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FIGURE 8.10. - RACH CONTOURS OF EULER CORPUTATION ON BLADE SUR-

FACES: ADVANCE RATIO = 1, RR = 0.8, a = 0 °.
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blade tip, the Euler contours are asymmetrlc with the pressure surface,

being nearly the inverted image (left to right) as compared to the

suction surface. This might be the result of blade stagger which would

give an inverted image for a symmetric blade. For the case of

isentropIc flow, the Mach number on the pressure surface at a given

chord location would be the same as that on the suction surface if its

location was measured from the opposite end of the blade. To give an

example, the maximum Mach number might occur at 60 percent chord, for a

given span station, on the pressure surface; it would then have to occur

at 40 percent chord on the suction surface. The reason for the observed

difference in the magnitude between the pressure and suction contours

for the EuIer case |s not known, but may, in part, be due to the grid

asymmetry. While the results of the HSD contours are shown to be

symmetric, there is no reason that the maximum Mach number must be at

midchord.

The blade-to-blade contours for this case are shown in Figs. 8.]l

and 8.12. The HSD results are given for the following range of Math

contours: 0.6 to 0.66 for Fig. 8.lI(a); 0.66 to 0.7] for Fig. 8.11(b);

and 0.75 to 0.78 for Fig. 8.II(c). The Euler results are presented for

the same respective range of Mach contours. The primary difference

between the two sets of contours is that the Euler computed contours

more closely resemble contours about isolated blades. In the case of

the HSD contours, they tend to shift upstream on the pressure side and

downstream on the suction side of the blade so as to gradually join

together at midchannel.
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FIGURE 8.11. - RACHCONTOURSOF SMALL DISTURBANCECORPUTATIONON BLADE-TO-BLADESURFACESAT VARIOUS SPAN LOCATIONS:

ADVANCERATIO : 1, I_R : 0.8, a = 0°.
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Case 3) X = l, MR : l.l, _ = 0°

This repeats the prev|ous case, except that now the free-stream

Mach number is increased so that it has a value of 0.7778 on the axis

and a helical free-stream value of l.l at the blade tip. The Mach

contours on the blade surface are given in Fig. 8.13 for the HSD

computation. The contours are shifted toward the trailing edge on both

the pressure and suction surfaces, which show |dentical contours. Near

the tip and trailing edge a very weak shock may exist. In the case of

the Euler computation, the rearward shift of peak Mach number is more

pronounced. A weak shock probably exists on the suction surface where

larger gradients than on the pressure side are indicated in Fig. 8.14.

The blade-to-blade contours for this case are shown in Fig. 8.15

for the HSD computation and in Fig. 8.16 for the Euler computation.

For both sets of results, the contour Mach numbers range from: a) 0.82

to l.O; b) 0.87 to 1.06, and c) 0.99 to 1.16. It is not clear that any

shock exists for the HSD computation. However, a weak shock is

observable in Fig. 8.16(c) of the Euler computation; it originates near

the trailing edge of the suction surface and extends outward to a

positlon upstream of the neighboring blade.

The HSD program was also used to obtain solutions for this test

case for three additional grid densities. The grids differed from the

standard grid in the number of grid intervals used in the three

coordinate directions, whereas the locations of the upstream,

downstream, and Fadial boundaries went unchanged. Also, the type of

stretching was the same as for the standard grid. The number of grid

Intervals for each computational direction is presented in Tab]e 8-3 for

each of the three HSD refinement grids. These refinement grids are
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FIGURE 8.13. - MACH CONTOURS OF SMALL DISTURBANCE COMPUTATION

ON BLADE SURFACES: ADVANCE RATIO = I, MR = 1.1, a = 0°.
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FIGURE 8.14. - MACH CONTOURS OF EULER COMPUTATION ON BLADE SUR-

FACES: ADVANCE RATIO = I, MR = 1.1, o = 0°.
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tIONS: ADVANCERAIiO : 1, I_R _ 1.1, o : 0°.



141

(A) r = 0.375 R.

1 - 0.820 1 - 0.870 1 - 0.990

2 - 0.850 -/;- -__.../ 2 - 0.902 - _z/-_ 2 - 1.018

3 - 0.880 __L 3 - 0.933 _ 3 - 1.0_17

q - 0.910 q - 0.965 q - 1.075

S - 0.940 / 5 - 0.997 5 - 1.103

G - 0.970 G - 1.028 G - 1.132

7 - 1.000 7- 1.060 7- 1, 160
j" f.f

3 L 2"

i _ I /" .._-3

-2 _:_5.

(B) r = 0.625 R. (0 r = 0.875 R.

FIGURE 8.16. - I'IACH CONTOURSOF EULERCOfqPUTAT]ONON BLADE-TO-BLADESURFACESAT VARIOUS SPAN LOCATIONS: ADVANCERATIO = 1,

MR = 1.1, 0 = 0°.

©RZGIN.A.L PAGE IS

OE POOR QUALIT_



142

labeled coarse, medium, and fine, corresponding to their respective grid

densities. For each of these additional grids, 6 grid intervals

stretched from both the upstream boundary to the leading edge and from

the trailing edge to the downstream boundary. Also, for each of these

grids, 4 grid intervals stretched from the blade tip to the outer radial

boundary. The variations among the grids were in the grid density used

on the blade surface and the grid density used from blade to blade as

follows: (I) the coarse grid contained I0 intervals from the leading

edge of the blade to the trailing edge of the blade, 3 intervals from

the hub to the blade tip, and 10 intervals from blade to blade; (2) the

medium grid contained 20 intervals from the leading edge of the blade

to the trailing edge of the blade, 6 intervals from the hub to the blade

tip, and 20 intervals from blade to blade, and (3) the fine grid

contained 30 intervals from the leading edge of the blade to the

trailing edge of the blade, 12 intervals from the hub to the blade tip,

and 40 _ntervals from blade to blade.

Some solution results obtained using the refinement grids are

provided in Figs. 8.17(a) to (c) where constant Mach number contours on

the pressure surface of the blade are presented for the coarse, medium,

and fine grids, respectively. These results are compared with the

corresponding results presented earlier in Fig. 8.13(a) for the same

range of Mach number contour levels as were obtained using the standard

grid. In general, the contour patterns obtained for each of the three

refinement grids are similar to the contour pattern for the standard

grid. The highest Mach number contour is absent from the results shown

_n Fig. 8.17(a) since this level exceeds the maximum value computed for

the coarse grid density. There are two effects of grid refinement to
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144

be noted: (1) an increase in grid density results in a greater range

of Mach numbers being obtained, and (2) an increase in grid density

produces a more nearly symmetric contour pattern. Further refinements

of the grid were made by increasing the density of the standard grid in

each of the three coordinate directions, but only one direction at a

time. Contour plots are not presented for these additional grid

refinement results, but it is noted that they agreed closely with the

contours provided in Fig. 8.13(a) for the standard grid. Based on

these additional results and the fact that the contours of the fine

grid reflnement solution, presented in Fig. 8.17(c), agree closely with

the contours for the standard grid solution, the refinement

study indicated that the standard grid density is sufficient for most

comparison purposes.

To provide information on the convergence properties and the

computational requirements of the HSD code, the following data are

tncluded for the three grid refinement cases: (1) the overall reduction

in the average solution residual; (2) the amount of computational time,

and (3) the size of allocated computer memory. After computing 5000

iterations on each grid, the following was found: (1) the average

residual decreased by 7 orders of magnitude using the coarse grid, 3.5

orders using the medlum grid, and 2 orders using the fine grid; (2) the

computational time required was 43 sec using the coarse grid, 204 sec

using the medium grid, and 3204 sec using the fine grid, and (3) the

memory allocated was 175,000 words for the coarse grid solution, 203,000

words for the medium grid solution, and 330,000 words for the fine grid

solution.
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Case 4) X : l, MR = l.l, _ = 2°

As a final case, the HSD code was used to recalculate the previous

case except that a spanwise uniform angle of attack of 2° was used. The

Euler code was not used for this case. The Mach contour plots are given

in Fig. 8.18 for the blade surfaces and in Fig. 8.19 for the blade-to-

blade surfaces. The effect of imposing an angle of attack on the blades

resulted in a difference between the pressure and suction contours in

the expected direction, i.e., the fluid velocity is now higher on the

suction side. The blade-to-blade contours reveal that the flow is

accelerated to a greater degree on the suction side. Although a weak

shock may exist on either surface, no shock is noted to extend into the

fluid from either surface of the blade.



146

TIP

7

4

1 - 0.850

2 - 0.908

3 - 0.967

4- 1.025

5- 1.083

6 - 1,142

7 - 1.200

L,E,

HUB

T,E,

(A) PRESSURESURFACE,

L,E,

(B) SUCTION SURFACE.

IFIGURE 8-18. - MACH CONTOURS OF SMALL DISTURBANCE COMPUTATION

ON BLADE SURFACES: ADVANCE RATIO = I, MR = 1.1, a = 20.

TIP

HUB

T.E.



147

DRIGINAL PAGE IS

DE POOR QUALITY

1 - 0.750

2 O. 792

0.8_3

4 O. 875

5 0.917

6 O.958

/ 1.000

L.E. T.F. L.[. I.E.

(A) r = 0.375 R. (B) r : 0.625 R.

1 - 0.850

2 - 0.883

3 - 0.917

- O.950

5 - 0.983

6- 1.017

7 - 1.050

\

1 - 1.03

2 - 1.0q

3 - 1.05

q- 1.06

5 - 1.07

6 - 1.08

7 - 1.09

L.E.T.E.

(C) r = 0.875 R.

FIGURE 8.19. - RACH CONIOURSOF SHALL DISTURBANCECOMPUTATIONON BLADE-TO-BLADE SURFACESAT VARIOUS SPAN LOCATIONS: ADVANCE

RATIO : 1, RR : 1.1. 0 = 20 .



148

TABLE 8-I. - OPERATING

PARAMETERS FOR THE

FOUR PROPELLER

TEST CASES

Case )_ MR c_

I lO0 0.8 0.0

2 l 0.8 0.0

3 l l .l 0.0

4 l 1.l 2.0

TABLE 8-2. - NUMBER OF GRID INTERVALS IN EACH MESH REGION FOR THE HSD-SOLUTION

STANDARD GRID AND BOTH EULER SOLUTION GRIDS

Standard HSD-
solution

grid

Euler solution

rid for= lO0

Euler solution

rtd-lf°r

Streamwise or axial direction

Upstream
boundary

to

leading
edge

II

14

15

Leading
edge
to

trailing
edge

30

30

3O

Trailing
edge
to

downstream

boundary

11

14

16

Radial direction Circumferential
di recti on

Hub
to

blade

tip

lO

10

lO

Blade

tip to
outer
radial

boundary

10

10

lO

Blade
to

bl ade

20

20

20

TABLE 8-3. - NUMBER OF GRID INTERVALS IN EACH MESH REGION FOR THE HSD-SOLUTION

REFINEMENT GRIDS

Streamwise direction

Upstream
boundary

to

leading
edge

Leading
edge
to

trailing
edge

Trailing
edge
to

downstream

boundary

Coarse HSD-

solution

grid

Medium HSD-
solution

grid

Fine HSD-
solution

grid

I0 6

20 6

30 6

Radial direction

Hub Blade

to tip to
blade outer

tip radial
boundary

3 4

6 4

12 4

Circumferential
direction

Blade
to

blade

10

20

40



IX. CONCLUDING REMARKS

In this thesis the flow over a propeller has been investigated.

This investigation involved the following main elements: (I) using a

potential formulation, the general tensor form of the equation governing

the unsteady, inviscid, irrotational, and isentropic flow over a

propeller in a noninertial, blade-fixed coordinate system was developed;

(2) based on a coordlnate system whlch is aligned with the undisturbed

free-stream helical flow, a disturbance equation of equivalent accuracy

to the general tensor equation was established in which the unknown is

the perturbation potential, measured by its variation from the free-

stream potential; (3) a systematic simplification of the perturbation

equation was made, based on the scaling parameters characteristic of an

advanced turboprop, thus leading to the establishment of a low-

frequency, small disturbance equation for an unsteady, approximate (or

small) perturbation potential; (4) the corresponding boundary conditions

for the approximate perturbation potential were derived for both the

solid surface and the farfield boundaries; (5) a new periodic helical

coordinate system was introduced which provided for the straightforward

treatment of the blade-surface boundary conditions and, also, the

treatment of perlodlc boundary conditions for a cascade; (6) an ADI

scheme, previously used to solve for flow about a helicopter rotor tip

using Cartesian coordinates, was extended to include the capability of

solving the propeller equation when more than one cross derivative term

is retalned; (7) a computer program, which was structured directly from

149
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the program used to calculate the solution to the unsteady disturbance

equation for flow over a helicopter rotor tip, was made which solved the

unsteady small disturbance equation for propeller flow using helical

coordinates; (8) steady-state solutions were calculated using the

computer program developed here for four distinct propeller test cases,

which included both subsonic and transonic free-stream helical Flow, and

(9) the results obtained for the four steady test cases were discussed

and compared with corresponding results From an Euler solution program.

The test cases presented in the last chapter were chosen because

they serve as good prototypes for initial propeller studies. By

_nspection of the results obtained above, by either solution program,

the flow of each case appears to lie within the range of computing

capabillty of a small disturbance approach. In particular, no strong

shocks were detected, nor did the computed flow depart by more than an

acceptable extent from the free-stream state. Thus, for these studies,

the flows appear to lie within the solution range governed, not only by

the more complete Euler equations, but by the small disturbance equation

as well.

In regard to the above remarks, _t is emphasized that an obvious

goal in undertaking this investigation was to determine if a small

disturbance approach, in the manner applied here, could be used to solve

for the steady flow over lightly loaded propeller blades operating in

the transonic regime. This goal was accomplished and illustrated for a

number of test cases. Another central goal was to provide an estimate

on the validity of the solutions obtained. Lacking exact solutions, an

EuleF solution code was used to provide comparison solutions for each of

the test cases. The results of the test cases presented in Chapter VIII
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indicate that, although both the helical small disturbance solution

program and the Euler solution program provide reasonable solutions,

enough differences exist between the two codes to warrant further

investigation. These additional investigations should be conducted

toward the purpose of verifying each of the programs, as neither can be

considered as providing the exact solution. In particular, the

difference occurring between the results of the two solution programs

in the magnitude of the constant Mach number contours for case l should

be resolved. Similarly, the difference between the results of the two

programs for the blade-to-blade contours needs to be explained. Some

of the differences may be attributed to the absence of a common mesh.

As noted in Chapter VIII, the individual meshes used in these

calculations were coarse. The density of the mesh was limited by the

memory capacity of the computer. This limitation in capacity impacted

the Euler program directly, since it required several times the memory

capacity of the small disturbance program; the mesh density used in the

small disturbance program was essentially set to match that used in the

Euler program. Nevertheless, the grid refinement results obtained for

the small disturbance solution of case 3 indicate that the grid density

was reasonable, with the conclusion that further refinement of the grid

was not going to result in large changes in the distribution of the Mach

number contours. In addition to the mesh coarseness, other variations

in mesh characteristics existed between the two codes. Some of the

computational differences between the two codes might have been resolved

if a common mesh had been used. As a final remark concerning solution

verification, it is often the case that the verification of a solution

is the most difficult step and one that is dependent on the existence
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of solutions from other programs. In the case of the propeller, the

capability to solve the flow is only now emerging, and hence the

verification process will certainly be an ongoing one. It is hoped that

the flow cases presented here will serve as test cases for other

efforts.

A few comments will now be made concerning the potential value of

the small disturbance computer program. In its present form, the

program is capable of solving flow about lightly loaded blades, where

the flow is steady in a blade-fixed coordinate system. However, the

governing equation developed and presented in Chapter IV is for an

unsteady flow. The decision to study only steady flow cases in this

investigation was made not because of a particular limitation in the

method, but because the steady flow problem was deemed sufficiently

important and difficult to be treated separately. The relative value

of the small perturbation method, as compared to methods based on

equations valid for more general flows, such as the full potential

equation or Euler equations, is greater for unsteady flow than for

steady flow. The reason for this is that the computational resources,

both in the memory capacity and speed of the computer, required to solve

an unsteady flow are much greater than the resources required for the

solution of a steady flow. Clearly, the reduction in computational

expense offered by a small disturbance approach in comparison to, say

an Euler equation approach, will be compounded when the use of either

computer storage or computer time is increased.

As an example of a practlcal circumstance that i11ustrates the

additional resources needed for solving an unsteady flow, the

restrictions on the time step is an obvious case in point. The time
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step must be restricted to a degree which allows the unsteady phenomena

to be resolved; this is a significant limitation, and one which is often

further complicated by the existence of fundamental time scales of

widely differing magnitude. The minimum time step, corresponding to the

smallest time scale required to resolve the flow, essentially determines

the overall expenditure of computer time.

As another example which illustrates the additional demands made

on computer resources in the case of an unsteady problem, the

computational mesh size is mentioned. For most steady problems

involving a farfield boundary surrounding a body, the computational mesh

Is stretched, so as to produce a grid having larger intervals away from

the body than near it. This is especially typical with respect to

transonic flow problems, where the decay of perturbations traveling

lateral to the flow is extremely small, and consequently, the farfield

is often placed lO0 body lengths away. With a distant placement of

farfleld boundaries, a stretched grid is highly desirable, as it offers

a significant reduction in mesh points in comparison to an unstretched

grid; the magnitude of the grid stretching, of course, affects the

solution accuracy. However, when using a stretched grid for computing

an unsteady flow, additional errors, beyond those encountered for steady

flow, are introduced. An example of the cause of such errors is the

inaccuracy that occurs in the replication of an outgoing wave when it

travels through a grid which is stretched. Near the body where the grid

is finely spaced, the characteristics of the wave may be well

represented; away from the body, where the grid is coarse, the wave may

be distorted, both in magnitude and frequency. Furthermore, the

resulting distorted wave may be reflected back toward the body,
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whereupon, after further distortion occurring on its return path, it

later reaches the body, but with a different wavelength and a different

magnitude than it would have had if a uniform grid had been used.

Additional concerns, beyond the time-step and mesh size

limitations, arise in the case of unsteady flow, and include the proper

treatment of an aerodynamic body displaced from its equilibrium position

due the action of fluid forces. Many of these concerns may be

adequately addressed by adopting a perturbation approach. The example

of the restriction on mesh size discussed above illustrates the

advantages of a perturbation approach of the type used in the present

investigation. For the same grid density, a small disturbance approach

will requlre only a small fraction of the amount of computer memory as,

say an Euler solution approach. With a given amount of computer memory,

a finer grid, stretched or unstretched, can be used with the small

disturbance approach in comparison with the same type of grid used for

the Euler code. Furthermore, a small disturbance approach is computa-

tionally IlK)reefficient with respect to computer time, in general, than

methods solving the more geneFa] equations. Since, as was discussed

above, the unsteady flow case requires a greater number of mesh points,

the computational savings of an efficient code is compounded above the

savings realized for steady flow calculations because the computational

time required to complete a solution iteration increases in proportion

to the total number of mesh points. In view of the above remarks, and

considering current computer capabilities, the small disturbance

approach presents a viable method of solving both steady and unsteady

propeller flow.
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Based on this conclusion, a few suggestions are made regarding

possible future investigations of propel|er flow using the helical small

disturbance approach. These suggestions include methods of improving

on the above investigation and also possible extensions to the scope of

the investigation. As a first step, test-case comparisons similar to

those studied here should be computed using a common mesh. As a means

of providing a common mesh, a more general helical coordinate system

than the one presented in this thesis has already been developed. This

newer helical coordinate system conforms to the exact blade shape,

rather than the mean chord position. This means that the small

disturbance boundary conditions can be replaced by actual blade surface

boundary conditions. The new coordinate system is suitable for other

inviscid flow solvers, and thus provides a common mesh upon which

comparison solutions could be computed. Additional studies could also

be made investigating the effect of using the exact blade boundary,

rather than the mean chord position, as the location for the blade

surface boundary condition. For unsteady flow which may involve blade

flutter, the equilibrium position of the blade may be used in place of

the exact location of the blade, if the blade deflection is small. In

this way, the small disturbance approach to the treatment of the blade

boundary condition can be accurately extended to unsteady flow. These

are some of the possible areas which may be examined in future

studies. Should any additional work along these lines be undertaken,

the approach chosen should be as simple as reasonable accuracy allows.



APPENDIXA - HELICALCOORDINATETRANSFORMATIONFORA CASCADE

In this section, the metric tensor componentsare derived and the

Jacobian is determined for a general transformation between orthogonal

Cartesian coordinates xi and helical coordinates yJ. The

Cartesian coordinates will be given as functions of the hel_ca]

coordinates which is expressed formally by

i ij
x = x (y) i,j : ],2,3. (AI)

Both x i and yJ are rlght-handed triplets. To avoid carrying

along the superscrlpt notation, the following assignments are made

x ] = x, x 2 : y, x 3 = z (A2)

for the Cartesian coordinates and

yl = Y, y2 : r, y3 =

for the helical coordinates.

defined through

where

(A3)

The transformation of coordinates is then

x = x(y,r,_) = r sin

y = y(y,r,_) = r cos

V
z = z(y,r,_) = -y 0 + A(r)B(_)

(A4)

(A5)

(A6)

(A7)

and is measured from the y-axis as is shown in Fig. (6-2). The total

or helical velocity U and the axial velocity V are each functions

of r and are connected by the rotational velocity _ through the

Pythagorean relation given by
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U : U(r) = [(fr)2 V2 ]]12+ (r) (A8)

The slgn|flcance of the functlons A(r) and B(_) and their actual

forms were consldered in Chapter V. Here they are assumed to be

reasonable functions of r and E] respectively.

By defining

U' dU V' dV dA dB
- dr ' - dr ' A' - dr ' and B' : _-_ , (A9)

the individual partial derivatives of the Cartesian coordinates, which

wi]l be needed, can be expressed as

1
ax _ ax fr

ayl - ay - u
cos _ (AIO)

1
ax _ ax

ay2 - ar -

a_
sin o + r _-_ cos (All)

1
ax _ ax r

ay3 - BE] - R cos

(AI2)

ax2 _ By fir
sin

ayl - ay - u

(A]3)

ax2 _ By cos _ - r aa

ay2 ar = _-_ sin
(AI4)

ax 2 By r

ay3 - aE] : - R sin #
(AI5)

3
ax _ az v

ayl - By - u
(AI6)

- v,)ax 3 az v - u- Y A'B
ay2 - ar - U' +

(A17)

ax 3 _ az
AB'.

ay3 - aE] -
(A18)
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A necessary and sufficient condition for the transformation

relations to be independent is that the Jacobian J of the

transformation, namely

a =

1
ax

ay 1

2
ax

ay 1

ax 3

ay 1

1 1
ax ax

ay 2 By 3

2
ax

By 2

8x 2

By 3

3 3
ax ax

By 2 Oy3

(AI9)

be nonzero. The partial derivatives given by equations (AIO)

through (AIS) can be used to evaluate J; which is expressed in mixed

form to reduce the algebra, as

J =

£2r at_ r
U--- cos u_ s i n o + r _-_ cos a _ cos o

Qr ao r
- U-- sin a cos a - r _-_ sin o - _ sin o

- V az az

(A20)

Expanding the determinant produces the following"

a
fir az (cos 2 0 - r ao v r n2 ao
u a{ _-_ cos 0 sin o) + O R (si O + r _ cos O sin O)

ao v r 2 8_
fir az (sin 2 0 + r _-_ cos o sin o) + _ _ (cos 0 - r _-_ cos 0 sin O)+ U at

r fir az r Qr az v r fir az (A21)
R U ar cos # sin 0 + R U ar cos 0 sin 0 - U R + U at

From this, the transformation is seen to be valid in the domain where

O _0, i.e.,
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aZ V _
^_ _ - _fiR

(A22)

The covarlant metric tensor components gij can be determined using

axmax m

gij - ayi ayJ '
(A23)

This wi11 be used to find each of the six distinct gij" First, to

find g11 the following three terms are easily developed"

ax 1 8x 1 _

ay Iay I -
ax_2 ) COS20=

ay Iay I

ay I ay I ---_,ayy/

Adding the three terms as prescrlbed by Eq. (A23) gives

gll = + = 1,
(A24)

which follows from Eq. (A28). Similarly, the terms for g22 are

___ (ax_ 2 n2 a_ r 2 (80_ _-
axl axl -\_-_/ = si 0 2r _-_ cos _ sin _ + _ar/ c°s2 _ay2 ay2 +

(_r) 2 a_ r2 [a_ 2 n2ax2 ax2 --- = cos 2 0 - 2r _-_ cos 0 sin 0 + _-_/ S1
ay2 By2

ax3 ax3 az_ 2 l-/'v

ay2 ay2 =

and, thus

g22 : 1 + r2 {8_ 2 [aZ_ 2
 ar/ + ar/

(A25)
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and, thus

ay3 ay--3 : : _ sin 2

ax3 @x3- /'az/2 )2

BY3 aY_ -_/ = (AB'

For
gI2

and, thus

For gI3

g33 : + _a{/"

ax_11ax_7= a_ a_ _ _
_r a_

ay I 8y2 - ay ar - 0-- cos _ sin _ + U-- r _-_ cos 2

ay I By2 - ay ar Dr _r at_ n2
U cos # sin uq + 0-- r _ s1 uq

ayI ay2 ay ar _ - _ _ V' V A'-oU' + B

fir aa V az
gl2 = 0- r a--r U ar

ax___] ax____1 a__xax _r r

ay 1 ay3 - ay a--_ : u-- R C°s2 #

ax--_2ax-.-__2: a__ ay Qr r n2
ay I ay3 - ay a_ - u _ s|

ax_3 ax____3] a.__zzaz v

ay ] ay3 ---ay a--_: - 0 AB'

(A26)

(A27)
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and, thus

g_r r V
g13 - U R -0AB'

(A28)

For g23

ax Iax I ax ax r r a_ 2
- z ar a{ R cos a sin a + _ r _ cos

ay2 ay3

ax2 ax2 _ ay ay r r a# n2

ay2 ay3 ar a_ : - R cos _ sin # + _ r _ si #

ay2 By3 - ar aE_ = _ - u-- Y + jAB'

and, thus

r ao az az
g23 = R r _-_ + ar a{

(A29)

or

fir r U'Z
g23 = - U R U

+ U' - y + A' AB'

We can collect gll' g22' g33' g12' g13' and g23 into the matrix

(A30)

glj =

let

m

_r a_ v az or r V az
I O- r a-_ - u ar U R U a_

_ r 2 (am_ 2 faz_2 r am az az
O- r _ U ar k_ / + r +

Qr r V az r a# az az (r C laz_ 2

U R U aE: _ r _ + ar aE_ I_J_ + \aE_J _

The Det gij can be readily calculated.

(A31)

To simplify the notation,

a_ (A32)
az az and n : r a--_- ar ' 6 - a_ '

where m, B, and n are used only for convenience and are independent

of their use elsewhere in the text. The determinant of gij' when

expanded, gives
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2Oet g_j - 1 + n
+ _ _ -- + 2 0 U-- n_ - _ + B2

- 1 + n + _ -- _ 2 U R U 8 + 0

+2 n-_ n+_B - R 0 B

r 2 2 r m2C$2
-(_)n - 2 _ n_G- •

(A33)

Further expanslon and use of the identity

(A34)

yields

+ UU rlc_+

cC+ q2(32 + -- + 0 U-- ctnF_2- -- + 2 U R U

-(V)2B 2 - (_r--) 2 (_In 2 + 2
_r 'c V 213 r 2
U RU n - - --

 vor_r r V 213 _ _ + 2 __r - 2 R U U n213
÷2U RU

r r _r V 2 <z2(3
+ 2 _ -- n_i3 - 2 U U n_I32 - 2 U U n_ - R U U

+ 2 _ n_B + 2 _2B2 - 2 R n<_F3- •
(A35)

Cancellation reduces Eq. (A35) to the following form

OV

Det glj : + 2

f}r rV
U RU

(__vor0z_2g = Det g_j = 0 + U _1 "

(A36)

(A37)
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Comparison of thls result with Eq. (A21) shows that

I/2
O : (g) ,

exactly as It must.

The contravariant metric tensors

(A38)

and g using the general relation

g_J can be calculated from gij

where

lj
g

Gij are the corresponding minors of the determinant

are determined as follows"

= g g22g33 - g 3

=- 1 +n + + - n+<z
g

g°

therefore,

therefore,

11
g

g

=- g2
g

g : g gllg33 - g 3

g R 0 (3

U RU g+

2

22 l(_V _r )g :_ 0+O-_ :l.

g33 I( 2)= g g11g22 - g12

1 1 +n +<z - q c_
g 0

gll

(A39)

The

(A40)

(A41)
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I Ii (V)2q2 f2r V (_r)2 2]= _ * - + 2 U- 0 n_ + --

therefore,

--_ + n+0-= .

12 I
g = _ _ (g21g33 - g31g23 )

:I(Fv= - g q _ =) [(_)2 Qr r

l fIR V Qr 6] r [R V Qr 6]:-_ 0+0- nF3-_ 0+0-

=-_ _0+0-6 n6-_

-_ C_ +_)

therefore,

gl2 l-_(_-o_)
g13 1

= _ (g21g32 - g31g22 )

v.)c vo)cg =g n-u n+_6 - _-_ I +n + 2

Finally

g23 I (g g )
= - g 11g32 - g31 12

=- _ n + _6- R- 0 6 n_ 0

' I(V)2 r Qr V r _ V (__[)2 ]Ig Rn +U U R=+6 0n+ =

or0)(v:-_ O+O-- on+g--=

therefore,

(v o_)g23 = _ _g n + _-m •

(A42)

(A43)

(A44)

(A45)
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The glj can be expressed in the symmetric matrix form simllar to

Eq. (A3I) as

lj
g = g12

gl3

(_o_-,+,+)_ ,.,_0 (_,.,

(+,-,+v)c ++.R-OB 1+n +

,iv o,.)1 --_ n+0- =

] 1 + q+0--

(A46)

Expanding the determinant of the above matrix for the contravariant

metric tensor components provides a check of the algebra and gives

++_ + +(__- ,-,0) + ,-,+o--<_

[C i++ ;](V °+)+ °+)- + + _- nB 0 n + 0-_ - 2 _- n8 n + 0-_

v)c v)x n-g n+om - --_-DB(I +n +_

[(Or Ve)(_ ) <_r r V ) 2 2 2- _-- n - 0 n + _B - - R - 0 B (I + n + = )

Thls simplifies to the following form after cancellation of some of the

terms

Oet giJ :
g2 - hi3 - _ (z rv + 0- =

(+ v)c v0)- 0-- n- 0 n + _F_ + --R- 0 (I + q + _ .
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In turn, this expression can be expanded to give

Det gij = 2 + - 13n2 + 0-- R U n_ U R
g

Qr r 2
-U R n

r V V Or r V _r r 2 V
fir n_13 + n_ + o_213+ 13+ -- U-- RU O U R U U--R n U n213

flr r 2 V 213)2]+ O-- _ = -0_

More cancellation brings

Det g
ij = l [(R) 2 132 (ur) 2 (R] 2g_ + - -- +2

Qr r V

U RU

Using the identity given in Eq. (A34), leads to

Det g =_ +2
g

flrrV

U RU

Using Eq. (A37), we finally have

Det gij 1 [_ V C2r 13]2U+0 -- g___ 1
: g

(A47)

Special Cases of Coordinates

Two special cases are now given. In the first case, for A = 0 in

Eq. (A6) and with V equal to a constant, we have the case where

is a purely circumferential direction and

gij =

- l - _ C_r2

U2 RU

g12

g13 g23
m

-(u-i'; (A48)

and,
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ij
g

+ _r _ _U_R
U2 V V

12
g 1 0

13
g 0

(A49)

In this case J = (rlR)(VIU).

In the second case, again, V is a constant, here, however,

2
A = (QR/V)(r/R) and B = _. This produces a coordinate system

where the _ curves are helices with the arc length inversely

proportiona] to

1

gij = g12

0

and,

r° The metric tensor components are

-U-- +2 0

+4 r __.Y_
U R

g23

(A50)

I

L _R 3 ;'

23
g

g31

2 :, :,

1
ur,,4( (_j_

(A51

In this case J : (rlR)(UIV).



APPENDIXB - HELICALCOORDINATETRANSFORMATIONFORAN ISOLATEDBLADE

The transformation is given here for the helical coordinates used

for flow about an isolated blade with a tip radius R which is rotating

with constant angular speed _ and advancing at a constant axial

speed V. The covariant metric tensor components gij and the

contravariant components gij- are also given for reference. Let

1 x2x , ,x3 be a right-handed orthogonal Cartesian coordinate system and

I 3Y ,y2 y be a right handed helical coordinate system as shown in

Fig. (6.1). The transformation of the helical coordinates to the

Cartesian coordinates is given by

l 2
x =y sin

X 2 = y2 cos

x 3 V 1 _ y2y3
:-uY +U

where the angle _ is measured from the

Fig. (6.1) and given by

nyl Vy 3

Here, the total velocity U is given as

[£2y22 i I/2U= ( ) +V

The covariant metric tensor components

y2-axis as shown in

gij are

(BI)

(B2)

(B3)

(B4)

(B5)

168
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gij = gl2

0 g23

y2

and the contravariant components are

g_J

2
l + (gl2)

= -gl2

gl2g23

-gl2 gl2g23

l -g23

-g23 I + (g23)2

Since for these coordinates Det gij z g = I, then the Oacobian

of the transformation is unity, J = I.

(B6)

(B7)



APPENDIX C - PARTIAL DERIVATIVES FOR COORDINATE STRETCHING

G_ven coordinates y, r,

y,r,{ defined by

y = y(y, r), r = r(_), = _(_),

the following relationships between the partial derivatives are

obtained:

which are functions of the coordinates

By B_ By

8r = 8y 8r + 8r B--r

8y2 = 872 + 8_ 8y2

: + 2 -- + + +

8r 2 872 \8r/ 8_8_ 8r 8r 8_ 8r2 8g2 \8--r/ 87 8r 2

8_2 = 8_2 + 8E_ 8{2

aySr" - _)_f2 8y 8F + ava_ay a-_+ BV8ySr

aya_ - aVa$ ay a_

a,-a_: a_--aEar a_ + ava_ar a_

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

(CIO)
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